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Abstract

This thesis deals with the dimensioning and structural optimisation of pebble B in the
Batumi Aquarium designed by Henning Larsen Architects and Buro Happold.

By the use of a parametric model the project will optimise the geometry of pebble B based
on qualitative studies of selected shell structures and geometric analyses of the proposed
geometry. From the studies it is concluded that planar and concave areas on a shell geometry
are unfavourable from a structural point of view.

The original and optimised geometry will be dimensioned through linear and non-linear finite
element analyses whereby the optimisation is evaluated in terms of the material consumption
of the two geometries. The non-linear deflection is seen to be the dimensioning factor for
both structures and the optimised structure proves to reduce the material consumption by
35,4% and 44,6% for concrete and reinforcement steel respectively.

As a preliminary investigation parametric visualisation tools are developed to assist an intu-
itive understanding of stresses and section forces in shell structures. Furthermore, a cross sec-
tion dimensioning tool for applying reinforced concrete cross sections, of sufficient strength,
to shell structures is developed.

Two conceptual proposals for a secondary structure to support the upper pebble in the
Batumi Aquarium are presented, analysed and dimensioned. A secondary structure not
consisting of columns proves to be an unsuitable solution.

Finally, a qualitative study of the influence of ring loads on shell structures is conducted.
From the observations made, two alternative proposals to the geometry of pebble B is pre-
sented. The two geometries are developed to support the upper pebble more efficiently than
the original geometry. The ring load study concludes that the angle between the applied
ring load and the shell geometry highly influences the sizes of the local bending moments.
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Resumé

Dette kandidatprojekt omhandler dimensionering og statisk optimering af sektion B i Batumi
Akvariet designet af Henning Larsen Architects og Buro Happold.

Projektet vil via en parametrisk model af sektion B optimere geometrien på baggrund af
kvalitative undersøgelser af udvalgte skalkonstruktioner, samt geometriske analyser af ud-
formningen af sektion B foreslået af Henning Larsen Architects. Fra undersøgelserne kon-
kluderes det, at plane og konkave områder på en skalkonstruktion er uhensigtsmæssige i et
konstruktivt perspektiv.

Gennem lineære og ikke-lineære elementmetodeberegninger vil den originale geometri samt
en optimeret geometri blive dimensioneret, hvorefter optimeringsprocessen evalueres ud fra
en sammenligning af materialeforbruget for de to konstruktioner. For begge geometrier er
de ikke-lineære deformationer dimensionerende, og det viser sig at den optimerede geometri
opnår en besparelse i materialer på 35,4% og 44,6% for henholdsvis beton og armeringsstål
i forhold til den originale geometri. Begge geometrier dimensioneres som skalkonstruktioner
udført i armeret beton.

Som en forundersøgelse til den statiske analyse vil visuelle parametriske værktøjer til illus-
tration og intuitiv forståelse af spændinger og snitkræfter i skalkonstruktioner blive udviklet.
Ligeledes vil et lineært dimensioneringsværktøj for skalkonstruktioner i armeret beton blive
præsenteret.

Yderligere vil to konceptuelle udformninger af en sekundær konstruktion, til optagelse af en
stor vertikal last fra en overliggende bygningsdel, sektion A, blive dimensioneret. Det viser
sig uhensigtsmæssigt at udføre de sekundære konstruktioner uden brug af søjler.

Endeligt udføres et kvalitativt studie af cirkulære linie- og fladelasters påvirkning af skalkon-
struktioner, og to udformninger af sektion B foreslås til optagelse af en sådan last.
Undersøgelsen konkluderer, at angrebsvinklen mellem last og skalkonstruktion er af afgørende
betydning for størrelsen af de bøjende momenter i skallen for en sådan lokal påvirkning.
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Chapter 1

Introduction

1.1 Background

1.1.1 Parametric Modelling

The initial design of an architectural model is often created with modern modelling tools
where advanced capabilities allow the architect to work with complex free-form shapes that
have been almost impossible to achieve previously. These models require adjustments in
order to cope with structural, functional, aesthetic or cost requirements - adjustments that
can result in manual rework. However, these changes can also be facilitated by a parametric
modelling approach where design parameters and constraints are used to determine a range
of design variations.

Parametric modelling is a generic editing approach where related parameters generate the
form automatically through algorithms. There is no clear definition of parametric modelling
and especially the degree of parameterisation is a subject of discussion. A fully parametric
building model for instance should incorporate all aspects such as: Overall geometry, struc-
tural system, installations and include restrictions such as energy considerations, structural
behaviour and more. Defining the necessary constraints for a fully parametric model is a
complex task and requires a complete overview of the design process.

A parametric approach targeting the interoperability of 3D modelling tools and finite el-
ement analysis (FEA) software has great advantages when designing a structural system.
A parametric variation of the structural model is exported to the FEA software in order
to perform a structural analysis where loads, boundary conditions and cross sections are
applied automatically. From a structural engineering point of view this fully automated link
will speed up the structural analysis when parametric changes in the model is to be analysed.

In large-scale or complex projects both the architectural and structural model will go through
many design variation before converging on a final design. A parametric approach facilitates
this optimisation process and offers the possibility to analyse variations in the design with
a high degree of detail and precision.



2 Introduction

1.1.2 Shell Structures

Under appropriate conditions shell structures have structural advantages due to the fact that
loads are carried as in-plane forces. The efficiency of shell structures is defined by curvature
and thickness. If bending moments are minimised a shell structure has a high strength-to-
weight ratio allowing the shell structure to obtain a very large span. Pier Luigi Nervi and
Santiago Calatrava are some of the best examples of building designers who have utilised
the advantages of thin shell structures (figure 1.1). The curvature of the shell structure
does not only create a spatial stiffness it also has a very high aesthetic value. Combining
the curvature of the shell structure with a structural material as reinforced concrete enables
curved, continuous and smooth surfaces.

Figure 1.1: Auditorio de Tenerife, Canary Islands, Spain - Santiago Calatrava.[21].

A qualitative study of small shell structures is a well-documented, by Henrik Almegaard
[8], approach in order to understand the effect of curvature, boundary and load conditions.
Both physical paper models and parametric models can be used in the qualitative studies.

1.1.3 The Batumi Aquarium

Henning Larsen Architects have designed the new aquarium in the seaport of Batumi, Geor-
gia. The 2.000 m2 aquarium has the characteristics of pebbles from the Batumi beach, which
create a significant expression inspired by nature. The formation constitutes five long span
self-supporting structures of complex geometric shape which will support the upper pebble.
The Batumi Aquarium is intended to become a modern, cultural aquarium for visitors but
will also stand out as a landmark for the Batumi area.
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(a) The Batumi Aquarium by Henning Larsen Architects. (b) Formation of pebbles.

Figure 1.2: The characteristic of pebbles for The Batumi Aquarium.

The formation and the complex shapes necessitate a challenging structural system of The
Batumi Aquarium. The highly-sculptural surfaces all contain convex, concave and planar
areas which makes it impossible to achieve in-plane forces only. Hence, bending moments
will cause an increased thickness of the structure. The support for the upper pebble should
contain no vertical columns and preferably not be visible at the interior surface of the lower
pebbles. These restrictions regarding a secondary structure complicates an appropriate
structural solution for the support of the upper pebble.

All the pebbles have similar characteristics. However, the largest pebble, referred to as
pebble B, is the most complex of the lower pebbles. With an overall span 30 - 40 meters
and a height of 16,5 meter makes it nearly twice the size as the second largest pebble.

1.2 Problem Statement

Based on the information presented in the introduction the parametric modelling approach
is ideal for structural analysis purposes regarding complex shell structures.
The behaviour of complex shell structures can be hard to predict analytically and a para-
metric modelling approach offers an alternative to the traditional analytical approach by
facilitating automated analysis setups for numerous investigations of varied geometries.
The main goal of this thesis is to structurally optimise the reinforced concrete shell structure
of pebble B of the Batumi Aquarium through geometric changes. Addressing the following
questions approaches this goal:

1. How does geometric changes affect a shell structure?

(a) How can the parametric approach be utilised in a preliminary study of shell
structures?

2. How can the geometry of pebble B be structurally optimised in continuation of the
observations made in the preliminary study and what are the benefits of such an
optimisation?
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3. How can the upper pebble in the Batumi Aquarium be supported by pebble B?

(a) What are the consequences and how can they be minimised?

1.3 Software Description

This section will briefly introduce the programs used in the work behind this report. This in-
cludes the 3D modelling program Rhinoceros and the parametric modelling plug-in Grasshop-
per. Autodesk Robot, Sofistik, Geometry Gym and Scan&Solve have been used for structural
analysis purposes.

Rhinoceros

Rhinoceros[1](Rhino) is a free-form 3D modelling tool mainly used by architects and in-
dustrial designers. Especially the use of non-uniform rational b-splines also referred to as
NURBS curves makes Rhino a preferred choice for intuitive free-from modelling. The ex-
tensive amount of tutorials, blogs, and free compendiums available online along with the
relatively cheap licenses makes Rhino a very popular tool.
Rhino does not natively interoperate with any other BIM software but does offer the pos-
sibility of saving 3D models in about 30 different file formats including .sat for an indirect
link to Autodesk Building Design Suite.
One of the most significant advantages of Rhino is the possibility of using the numerous third
party plug-ins available online. Plug-ins[1] such as Grasshopper, Kangaroo and Galapagos
are just some of the very effective and free plug-ins that intuitively optimise the free-form
modelling in Rhino especially in regards to further investigation from an engineer’s point of
view.

Grasshopper

Grasshopper[2](GH) is a free plug-in for Rhino that makes generative modelling a possibility
directly in the Rhino interface. The parameterisation of the Rhino models makes the alter-
ation of geometries a lot faster to implement than the possibilities already offered directly
in Rhino.
Unlike other generative design software such as Generative Components, GH does not re-
quire any knowledge of programming or scripting. It does offer the possibility of scripting
through Visual Basic but the number of native commands available fits even the most com-
plex demands of geometry modelling.
Again the amount of training material available online combined with the extremely intu-
itive interface makes the learning curve of GH very steep.
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Geometry Gym

Geometry Gym[3](GG) is a plug-in for GH developed by the australian Jon Mirtschin.
Among the tools offered is StructDrawRhino which applies structural properties to paramet-
ric geometries made in GH. User-defined or standardised section properties are applied and
modelled in Rhino which improves the productivity and makes Rhino models more suitable
for further structural investigations.
For this report however, the most interesting tools offered by GG are the Smart Structural
Interpreters (SSIs) that work as direct links between GH and numerous FEA programs in-
cluding Autodesk Robot, SAP2000, SOFiSTiK, Ansys and more. Some of the SSIs are more
thoroughly developed than others but all include the possibility of exporting geometries
directly from GH to the FEA interface of the given software. Some SSIs even include the
direct transferring of loads, supports and section properties but it should be mentioned that
while the SSIs do speed up the workflow of Rhino-to-FEA geometry exchange the SSIs lack
stability and consistency1.

Autodesk Robot Structural Analysis Professional

Autodesk Robot Structural Analysis Professional[4](Robot) is one of the most commonly
used FEA programs available. The interoperability with other Autodesk softwares such as
AutoCad and Revit Structure makes it an obvious choice in a BIM context.
Reinforced concrete and steel design solutions, along with the use of international design
codes including Eurocodes and a wide extent of graphically shown results, are just some of
the reasons why Robot is a widely used FEA software.

SOFiSTiK Structural Desktop

SOFiSTiK Structural Desktop (Sofistik) is a high performance software solution for civil
and structural engineering. With a wide range of interfaces a direct link between modelling,
meshing and further calculation steps, without having to manually convert data between
different programs, has been made possible. The interoperability with Cad-software such
as: AutoCad, Revit Structure and Rhinoceros enables unique modelling options. Further-
more, Sofistik contains a very powerful scripting language which provides the engineer the
possibility to create macros for load or analysis tasks, which is very useful when repeating
the analysis of a complex structural system.

Scan&Solve

Scan&Solve[5](SnS) is a plug-in for Rhino developed by Intact Solutions which enables a
FEA working directly in the Rhino interface performing structural analyses from solid Rhino
geometries. The intuitive and fast implementation of the structural behaviour of solid ge-
ometries cannot be questioned and as it will be investigated later in this report SnS is not
that far off from the results found from more used and generally recognised FEA software
such as Autodesk Robot and Sofistik.

1At this stage the plug-ins will cause both Rhino, GH and the FEA software to crash every now and then
but this should be fixed through further development in the future according to Jon Mirtschin.
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1.4 Process and Workflow

The evolution of computers and FEA software makes complex structural analyses less com-
plicated and reduces the manual calculations. This change forces structural engineers to
develop computational skills involving both modelling and analytic procedures for numerous
programs. Furthermore, the verification and understanding of the analytic results is to a
large degree the main objective for structural engineers today. A combination of parametric
modelling and structural analysis does not only facilitate the optimisation process by a range
of design variations it also has some advantages in regards to the understanding of analytic
results. This section seeks to clarify the overall process and the interoperability of software
used in this report.

The software described in section 1.3 has different key features and is used for different
purposes in this report. In the following the software and their respective fields of applica-
tion are described.

• Rhino - The 3D modelling engine where all geometries are generate.

• Grasshopper -Used for feature based parametric models. Development of analysis
tools.

• Geometry Gym - Direct link for exporting models to Robot.

• Robot - FEA of secondary frame structures and simple shell structures.

• Sofistik - FEA of advanced double curved shell structures.

• SnS - Qualitative study of simple shell structures.

In addition to the commercial programs a number of free plug-ins for GH have been used.
Furthermore, an interactive link between Sofistik and GH has been developed by use of
Microsoft Excel. This link is the key feature for all analysis tools developed in GH specifically
for this report. The tools use data exported from Sofistik to Excel such as the mesh geometry,
local mesh coordinate systems and section forces. One could argue that the Excel link does
not fit perfectly into the parametric approach but until now the Rhino-to-Sofistik link is a
one way link that does not offer the possibility to automatically export data back to Rhino or
Grasshopper. The analysis tools have been developed en route in order to visualise analysis
results and hereby obtain a general understanding of these. The detail level of the analysis
tools are kept to the conceptual and preliminary design phase level. Figure 1.3 illustrates the
workflow and interoperability of Sofistik and Grasshopper for the structural design process
carried out in this report.
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Figure 1.3: Diagram of workflow.

As a last remark it should be mentioned that the authors were only familiar with Robot at
the beginning of the thesis period. This indicates the user-friendliness of the interfaces for
most of the remaining programs used.

1.5 Organisation of Content

This thesis is divided into three parts including:
I PART 1
II PART 2
III PART 3

Part I includes a series of qualitative studies where the structural behaviour of a shell
of revolution is investigated. All studies have been carried out with a parametric modelling
approach where the alteration of models is eased hence numerous variations of geometries
can be analysed. Furthermore, section 3.3 contains an analytic verification of the used FEA
software. Part II contains the development of a parametric model for pebble B in The
Batumi Aquarium in order to create an optimised geometry. The main objective in Part II
is a structural analysis consisting of geometry, linear and non-linear analyses for both the
original and the optimised geometry. The geometries have been compared in terms of the
material consumption. In Part III different proposals for the support of the upper pebble
are presented. A secondary steel frame structure is dimensioned before the consequences of
applying the load directly on the shell structure of pebble B is investigated.
Finally the conclusion sums up the observations done throughout the report.
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Chapter 2

Shell Structures

Shell structures have been used for hundreds of years in architecture and civil engineering
and the technique goes as far back as to the Pantheon in Rome (figure 2.1 - the oldest known
concrete shell structure in the world. Over time the level of complexity of geometries used
within the architecture has increased where the tendency to use shell structures has changed
from the construction of spacious buildings like domes to the construction of double curved
and continuous surfaces to express an extraordinary and spatial geometric shape.

Figure 2.1: Pantheon, Rome and Palazetto dello sport, Rome. [19] and [20].

However it is not only from an architectural point of view that the boundaries for using shell
structures have been extended. While beams and plates primarily have a flexural resistance
mechanism, shells (disks and arches) have an in-plane resistance mechanism. Loads are re-
sisted much more efficiently in in-plane mode than in flexural mode. This fact makes shell
structures ideal in different engineering aspects.

In the following the advantages and disadvantages of using shell structures will be addressed.
Furthermore, a short description of shapes and characteristics of different shell structures
will be classified.
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2.1 Use of Shell Structures

Different types of single curved shell structures are used for industrial purposes; oil storage
tanks, in silos and in industrial chimneys. The single curved shell structures are very efficient
in resisting certain types of loads, like external or internal uniform pressure. Though in some
cases, it is better to take advantage of double curvature. Double curved shells can be used to
build spherical gas reservoirs, roofs, outer hull structures for cars, ships and aircrafts, water
towers and nuclear chimneys. Figure 2.2 shows examples of the use of double curved shell
structures.

Figure 2.2: Spherical gas reservoir [25] and car bodywork[26].

Compared to plate structures shells have clear advantages from both an architectural point
of view and as a structural member. The largest disadvantages when using shell structures
are from a production point of view and failure regarding buckling [7]. Due to even small
imperfections a thin shell will fail at a stress well below the theoretically calculated buckling
stresses. Buckling can be prevented by increasing the cross section thickness hence increasing
the flexural stiffness.

2.2 Classification and Mechanisms of Shell Structures

According to Ventsel and Krauthammer [6] a shell is defined as "a body bounded by two
curved surfaces, where the distance between the surfaces is small in comparison with other
body dimensions". The geometries of the curved surfaces initially divide the shells into
different categories such as; cylindrical, conical, spherical, ellipsoidal, paraboloidal, toroidal
and hyperbolic paraboloidal shells. All, except for the hyperbolic paraboloid are described
as a shells of revolution are presented in figure 2.3.[6].
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Figure 2.3: Geometric categories.

A governing presumption for all the above mentioned categories is that the shells have a
middle surface(figure 2.4) located at an equal distance from the outer and inner surface. A
distance denoted as half the thickness of the shell.

Figure 2.4: Middle surface.

As for plates, shells can be divided into two main classes according to their thickness; thick
and thin shells. Where the class of thin shells is state to have the ratio[6]:

h

R

 1

20

R is the radius of the curvature of the middle surface and h is the thickness of the shell.

The reason why shells are divided according to their curvatures and thicknesses is due
to the fact that these parameters are directly associated with the efficiency of a shell [6].
The curvature of a shell surface acquires a spatial stiffness, hence a larger load carrying
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capacity compared to a plate. This is due the fact that curved shell structures create a state
where applied transverse loads are mainly distributed as tensile and compressive stresses and
bending stresses minimized, hereby having a significant in-plane mode1 . The curvatures of
surfaces are often referred to in terms of Gaussian curvature with either a positive, negative
or zero value.

Figure 2.5: Gaussian curvatures.

The in-plane mode allow the shell structure a small thickness and therefore demonstrate a
high efficiency in terms of a high strength/weight ratio. Due to the small thickness the shell
possess a low strength for deformation caused by bending moments, these should therefore
be avoided. However, under appropriate loading and boundary conditions2 the bending
stresses can be neglected. This state is referred to as the membrane state of stress and will
be described in chapter 3.2.

These classifications and presumptions regarding categories, thickness, curvature and stresses
all facilitate a simplification of the analytical expressions and hereby makes it possible to
obtain an analytical solution for simple geometries. In the following sections only thin shell
structure with a finite flexural stiffness will be considered.

1The whole cross section contribute to the load-carrying capacity
2Conditions for membrane theory: 1) The boundaries of a shell are free from transverse shear forces and

moments. Loads applied to the shell boundaries must lie in planes that are tangent to the middle surface of

the shell. 2) The normal displacements and rotations at the shell edges are unconstrained: displace freely in

the direction of the normal to the middle surface. 3) A shell must have a smoothly varying and continuous

surface. 4) The components of the surface and edge loads must be also smooth and continuous functions of

coordinates.



Chapter 3

Preliminaries of Shell Analysis

This chapter encompasses a brief introduction to the understanding of the membrane theory
based on the governing linear theory1 of thin elastic shell structures [6]. In order to simplify
the extent of the introduction the membrane theory will only be clarified according to the
shells of revolution category. Firstly, some of the presumptions according to the membrane
theory of shells of revolution will be explained. Secondly, the membrane theory will be
applied to a hemisphere for the analysis of the displacement due to an axisymmetric load.
The analytic results will be conducted in order to verify the FEA software results performed
in further structural analyses and design of shell structures.

3.1 The Membrane Theory of Shells of Revolution

As mentioned earlier appropriate loading and boundary conditions combined with the lin-
ear theory of thin elastic shells yield the membrane theory. The main presumption of the
membrane theory is a shell resistance mechanism only due to in-plane mode, also called the
membrane state of stress. Hereby neglecting the effects of the bending and twisting moments
in the governing equations.

When investigating a shell of revolution exposed to an axisymmetrical load the membrane
theory is even simpler. Due to axisymmetrical loading the external load component and
displacements in circumferential direction are zero.

1Assumptions for linear theory: 1) Normals to the undeformed middle surface remain straight and normal

to the deformed middle surface and undergo extension. 2) The transverse normal stress is small compared

with other normal stress components and may be neglected.
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Figure 3.1: Membrane forces in an axisymmetrical loaded shell of revolution. [6]

From figure 3.1 p2 is seen to be in the circumferential direction, hence p2 = 0 ,as mentioned,
the kinematic, equilibrium and constitutive equations can be simplified.

1

R1

du

d'

� w

R1
=

1

Eh

(N1 � ⌫N2) = "1 (3.1)

and
u

R2
cot'� w

R2
=

1

Eh

(N2 � ⌫N1) = "2 (3.2)

Now the displacement along the tangent u and normal to the middle surface w can be
obtained from equation 3.3 and 3.4 by introducing the function f1(').

u = sin'

Z
f1(')d'+ C1sin' (3.3)

and

w = cos'

Z
f1(')d'+ C1cos'� "2R2 (3.4)

The function f1(') is conducted from equation 3.1 and 3.2 according to Ventsel and Krautham-
mer, [6], and determined in terms of the strain components and the curvature radius.

f1(') =
R2

sin'

R1

R2
"1 � "2 (3.5)

f1(') can be found when N1 and N2 have been determined for the analytic setup. N1 and
N2, for a hemisphere, are determined from the following equations:

N1 = � 1

rsin'

'Z

0

rR1(p1sin'̄+ p3cos'̄)d'̄ (3.6)

and

N2 = �R2

✓
p3 +

N1

R1

◆
(3.7)

C1 is a constant of integration and can be found from the boundary conditions for the shell.
By applying the previous equations and functions to a certain shell problem the displacement
in both u and w directions can be calculated with certain accuracy.
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3.2 Application of Membrane Theory of Shells of Revo-
lution

The application of the membrane theory will be based on a hemisphere as seen from figure
3.2 subjected to an axisymmetrical load of p per unit area acting in the global vertical
direction.

Figure 3.2: Shell dimensions, boundary conditions and deformation behaviour.

The boundary condition for the hemisphere is hinged with free movement in the normal
direction (w) of the shell. The red dotted line in figure 3.2 indicates the deformation of the
base. Furthermore it is noted that for a hemisphere R1 = R2 = R.

With the applied boundary conditions bending moments at the base are avoided. How-
ever, when the base of the shell is inclined a circumferential force,T, has to be obtained in
the shell due to a horizontal component from the tangential force N1. The magnitude of
the force in the circumferential direction depends on the angle2 between the origin and the
boundary condition. In the case of the axisymmetrical load of p per unit area the force T
can be calculated by the following equation. See appendix B.2.

T = pR2 cos'1sin'1

1 + cos'1
(3.8)

By the following equations the displacement of the hemisphere is expressed. Firstly, the
axisymmetrical load of p per unit area is transformed into components according to figure
3.1:

p1 = p sin' (3.9)

and
p3 = p cos' (3.10)

Now it is possible to obtain N1 and N2 from equation (3.6) and (3.7):

N1 = �pR
1� cos'

1� cos

2
'

= � pR
1 + cos'

(3.11)

and
N2 = �pRcos'+

pR
1 + cos'

= �pR
✓
cos'� 1

1 + cos'

◆
(3.12)

2Below 90 degrees a tension forces and above 90 degrees a compression force has to be obtained.
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The constant C1 can now be evaluated from the boundary conditions, u = 0|' = '1. See
figure 3.1, 3.2 and equation (3.3).

C1 =

pR2
(1 + �)

Eh

1

1 + cos'1
� ln(1 + cos'1) (3.13)

The displacement u along the tangent and w in the normal direction are yielded from equa-
tion (3.3) and (3.4) and the constant C1:
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The analytical deflection of the hemisphere found from 3.14 and 3.15 will serve as the
reference deflection for the verification of FEA software conducted in the following section.

3.3 Verification of FEA Software

This section will verify the chosen FEA software by comparing analytical results to the
results from Robot, SnS and Sofistik.
To ensure the accuracy of the chosen FEA software simple plate geometries are investigated
and the maximum deflections are compared to known sizes of deflection from basic plate
theory. A rectangular plate fixed in both ends and a circular plate fixed along the outer
edge, as shown on figure 3.3 and 3.4, are investigated. Further the deformations of the
hemisphere shown in figure 3.2 will serve as setup for the last verification.

Rectangular Plate

A plate, fixed in both ends with the properties found in table 3.1, is investigated.

Table 3.1: Rectangular plate - properties.

Length Width Thickness Load Material
10m 5m 0,3m 300kPa S235

The maximum deflection at midspan of a plate can be found from basic beam theory and
has a size of[10]:

u

max

=

1

384

pl

4

EI

(3.16)

The analysis setup for the rectangular plate from Robot can be seen in figure 3.3:



3.3 Verification of FEA Software 19

� �
Figure 3.3: Rectangular plate - Robot.

The maximum deflections found from analyses of the rectangular plate in Robot, SnS and
Sofistik are compared to the analytical deflection in table 3.2.

Table 3.2: Rectangular plate - vertical deflection.

Rectangular Plate Maximum Deflection Deviation
Analytical 17,98 -

Robot 18,08 0,5%
SnS 17,39 3,2%

Sofistik 18,10 0,67%

Circular Plate

A circular plate with the properties seen in table 3.3 is investigated. Again the maximum
deflection is the matter of comparison.

Table 3.3: Circular plate - properties.

Radius Thickness Load Material
10m 0,3m 300kPa S235

The maximum deflection of a circular plate fixed along the boundary edge is found in the
center of the plate when exposed to a uniformly distributed load. The analytical deflection
is found from the following expressions[10]:

u

max

=
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4

64D

(3.17)
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Et

3

12(1� ⌫

2
)

(3.18)

The analysis setup from Robot can be seen in figure 3.4.
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Figure 3.4: Circular plate - analysis setup.

The maximum deflections found in the center point of the circular plate with Robot, SnS
and Sofistik are compared to the theoretical deflection in table 3.4.

Table 3.4: Circular plate - vertical deflection.

Circular Plate Maximum Deflection Deviation
Analytical 6,14 0%

Robot 6,17 0,5%
SnS 5,84 4,9%

Sofistik 6,24 1,6%

Hemisphere

Finally a verification of Robot and Sofistik3 is carried out by the investigation of a hemi-
spherical shell structure exposed to a uniformly distributed vertical load. Figure 3.2 shows
the investigated geometry. The analytical deflections and membrane forces found as de-
scribed in section 3.2 are used as the reference values. Table 3.5 shows geometrical and
sectional properties of the hemisphere.

Table 3.5: Hemisphere properties

Radius Thickness Load Material
7,5m 0,025m 1MPa S235

The resulting deflections, membrane forces and moments at ' = 0

�, ' = 15

� and ' = 45

�

on the hemisphere (figure 3.1) can be found in table 3.6, 3.7 and 3.8 respectively.

Table 3.6: Robot and Sofistik deviations for the hemisphere setup. 0�.

' = 0

� Analytic Robot Deviation [%] Sofistik Deviation [%]

w [mm] 17,76 19,10 7,55 19,44 9,45
u [mm] 0 0 0 0 0

N1 [kN/m] -7500 -7579 1,05 -7510 0,13
N2 [kN/m] -7500 -7579 1,05 -7504 0,05
M1 [kNm/m] 0 6,75 - 1,78 -
M2 [kNm/m] 0 6,75 - 2,23 -

3SnS is not included in this verification since the trial version only contains clamped support conditions.
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Table 3.7: Robot and Sofistik deviations for the hemisphere setup. 15�.

' = 15

� Analytic Robot Deviation [%] Sofistik Deviation [%]

w [mm] 16,65 18,97 13,93 18,50 11,11
u [mm] 3,59 4,21 17,27 4,13 15,04

N1 [kN/m] -7630 -7628 0,03 -7636 0,07
N2 [kN/m] -6859 -6842 0,24 -6830 0,42
M1 [kNm/m] 0 1,31 - 0,56 -
M2 [kNm/m] 0 1,27 - -0,02 -

Table 3.8: Robot and Sofistik deviations for the hemisphere setup. 45�.

' = 45

� Analytic Robot Deviation [%] Sofistik Deviation [%]

w [mm] 8,07 8,77 8,67 8,55 5,95
u [mm] 8,65 9,35 8,09 9,13 5,55

N1 [kN/m] -8787 -8770 0,20 -8782 0,05
N2 [kN/m] -1820 -1827 0,37 -1815 0,26
M1 [kNm/m] 0 0,97 - 0,33 -
M2 [kNm/m] 0 0,97 - -0,18 -

Discussion

It is seen from the investigation that the maximum deflections are almost similar for all pro-
grams tested when considering the planar structures: the rectangular plate and the circular
plate. It is worth noticing though that the deflections calculated by SnS are consistently
smaller than the analytical deflection used as the reference deflection in this verification.
This is not the case for both Robot and Sofistik and because of the insecurity regarding the
FE method4 used in SnS and the limitations in the student version, this program is not used
for quantitative studies further in this report.
The deviation of 17,27 % and 15,04 % for Robot and Sofistik seems large but it is worth
noticing that the actual difference in the deflection is 0,62mm and 0,54mm respectively
for a hemisphere with a radius of 7,5 m. Furthermore, the deflection found by the use of
Robot and Sofistik are almost similar for the three different angles and are all conservative
when compared to the analytical deflection. Even though the deviation are relatively large
they are deemed acceptable and will be used for the analyses carried out in the succeeding
parts of the project. Finer meshed geometries have been investigated which did not influ-
ence the deviations significantly indicating a convergence of the section forces and deflection.

Finally it is worth mentioning that all geometries were investigated with varied thicknesses
in an attempt to clarify whether or not this would influence the deviations. This was not
the case in any of the setups.

4Without going into too much detail about meshing methods in general; Robot was set to use the coons
meshing method, Sofistik used a rectangular mesh pattern while SnS uses a meshing method that divides
the given geometry into cubic shapes with planar surfaces parallel to a global coordinate system.
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Chapter 4

Qualitative Study of Shells
Structures

In order to obtain a better understanding of the behaviour of shell structures, subjected
to comparable loading and boundary conditions, a qualitative approach based on paper
and computational models is used. Hereby, an intuitive understanding and foundation for
predicting the deformation behaviour of shell structures of varying curvature is possible.
The qualitative method has been divided into two steps; Firstly the deformation behaviour
of simple paper models exposed to a vertical load, imitating the impact from pebble A on
pebble B, has been compared with identical computational models exposed to a similar load
type. Secondly the deformation behaviour of more advanced computational models exposed
to different load types have been observed in order to understand the geometry of the pebble
B. By comparing different models it is possible to differentiate geometric shapes in terms of
stiffness[8]. Within this qualitative study the differentiation is very rough due to the fact
that it is based on deformation behaviour and not exact deformation values.

4.1 Preliminary Qualitative Study of Paper and Compu-
tational Models

The Batumi Aquarium, pebble B, has four geometrical characteristics in form of:

• Roughly shaped as an hemisphere.

• Inclined base geometry.

• Planar areas.

• Concave areas.

Three paper models of shells with positive curvatures have been constructed from the basic
shell configurations collection created by Henrik Almegaard[8]. In order to investigate phys-
ical models with similar characteristics to the pebble B. A hemisphere (a), a hemisphere
with a vertex hole (b) and a hemisphere with a vertex hole and breaches at the boundary
(c) were constructed in paper. The geometries can be seen in figure 4.1
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Figure 4.1: Geometry a, b and c.[8].

Faceted shell structures have been proved to have stability properties, under certain circum-
stances, equal to smooth shell structures [8]. Therefore the same structural behaviour would
occur for a smooth shell. By approximately subjecting the different shell structures to the
same vertical load it is possible to see the interrelation between the deformation behaviours.

(a) (b) (c)

Figure 4.2: Example of paper models.

Model a only experiences a local deformation, while model b is seen to be weak, in terms
of deformation, around the vertex hole, and the implementation of a hoop is necessary to
reduce deformations. The least resistant model is model c where large deformations occur
in both the structural ”legs” and around the vertex hole.
In the following similar shell structures have been analysed by the use of Rhino and the
plug-in SnS1. The use of SnS is justified, despite the deviation found in section 3.3, when
the a deformation behaviour is only analysed visually. The models are based on a hemi-
sphere with the properties stated in table 4.1.

Table 4.1: Hemisphere properties

Radius Shell Thickness Material
7,5 m 0,05 m Concrete

Each model is subjected to a vertical load and has clamped boundary conditions, see figure
4.3.

1Due to limitations in the trial version of SnS, only clamped supports and concrete material properties
are applicable.
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Figure 4.3: SnS - facetted hemisphere and applied load.

4.1.1 Facetted Computational Models

The deformed facetted shell structures can be seen from figure 4.4, 4.5 and 4.6:

Figure 4.4: Deformation plot of model a. Deformation scale 1:400.

Figure 4.5: Deformation plot of model b. Deformation scale 1:400.
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Figure 4.6: Deformation plot of model c. Deformation scale 1:400.

The deformations of the shells increase as the continuity and material, hence less overall
stiffness, is reduced. It is observed that the deformation behaviours are identical to the
results seen from the paper models in figure 4.2. This study verifies the qualitative method
and allows a further investigation of more advanced computational models as carried out in
the following section.

4.2 Qualitative Study of Advanced Computational Mod-
els

Even though the 18 models contained in the basic shell configurations collection[8] to a very
large degree may represent scaled models of actual shell structures, they are relatively time
consuming to construct. New 3D modelling and FEA software however enables a simple
tests of the deformation behaviour of smooth shell structures with an arbitrary geometric
shape.
As it will be seen later in this report pebble B supports the upper pebble A and is therefore
exposed to a point load relatable to the point loads investigated in this section. The inves-
tigation of the smooth shells is conducted under the same load and boundary conditions as
the faceted shell structures.

4.2.1 Smooth Computational Models

To expand the understanding of the deformation behaviour, in regards to the before men-
tioned four characteristics of pebble B, five different shell structures has been investigated.
All geometries are modelled parametrically through GH. The GH script can be found in
appendix D1. The overall parameters of the geometries are the variations of the upper
part going from convex to concave curvature as well as the base geometry going from an
inwards to an outwards direction. The geometries are modelled as one polyline curve, which
is revolved around the z-axis as illustrated on figure 4.7.
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Figure 4.7: Revolved shell structure.

All deformation plots have the same scaling factor in order to compare the results. The red
arrows indicate the deformation direction of the most exposed areas.

Figure 4.8: Deformation plot. Hemisphere.

Figure 4.9: Deformation plot. ”Legs” directed inwards.

Figure 4.10: Deformation plot. ”Legs” directed outwards.
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From the previous three figures it is seen that the change of the lower part of the shell, going
from inwards to outwards, does not influence the overall deformation behaviour. However,
the shells experience large local deformations. From the conclusion that the geometry of
the ”legs” has an insignificant influence on the deformation behaviour, when exposed to a
vertical point load, only model e, figure 4.9, will be further investigated as the inwards
directed base geometry resembles pebble B. To investigate how planar and concave areas on
the shell geometry influence the deformation behaviour, when exposed to a vertical point
load, the following two figures have been analysed.

Figure 4.11: Deformation plot. Planar upper geometry.

Figure 4.12: Deformation plot. Concave upper geometry.

Having a planar area at the vertex of the hemisphere, as seen in figure 4.11, generates a
more comprehensive deformation. The same tendency is seen in figure 4.12 although the
deformation of the concave area is best expressed as a total collapse.
By comparing figure 4.8 to figure 4.11 and 4.12 it is seen that a planar or concave area
influences the overall stiffness of a shell structure when exposed to a point load even though
the areas are not directly exposed to the load. This indicates the consequences of geometric
discontinuities within a shell structure.

4.3 Summary

It is seen from figure 4.4 and 4.8 that the deformation behaviours of a smooth and faceted
shell are identical. This is also stated by Henrik Almegaard [8]. The base geometry has an
insignificant influence on the deformation behaviour compared to planar and concave areas
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when exposed to a vertical point load. The planar and concave areas of a shell structure are
very sensitive in regards to a point load even when the areas are not directly exposed to the
load.

It can be concluded that obtaining a point load from pebble A on pebble B will have a
high impact at any area with geometric discontinuities even located at some distance from
the load point.
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Chapter 5
Geometric Comparison of Shell

Structures

In this chapter the importance of general alterations of the overall geometry of an axisym-
metric shell structure will be clarified in regards to two different load types. The hemisphere
from the previous section is used as reference geometry and the maximum deflections are
compared in an attempt to clarify the influence of convex and concave geometries respec-
tively but also the influence of a varying base geometry.
Finally a detailed investigation of the vertical deflection, when the upper part of a hemisphere
is changed towards a planar and finally concave geometry, will be carried out.

5.1 Analysis Setup

Based on the analysis setup from section 4.2.1 nine geometries are exposed to two cases of
a uniformly distributed load: Vertical and horizontal. The geometries have been chosen in
accordance to the different characteristics of pebble B as mentioned in section 4.

Both loads are based on a 1 MPa load distributed on the reference geometry - the hemisphere.
Illustrations of the various loads acting on the geometries can be found in the respective result
sections in this chapter. All geometries are modeled as S235 steel with a thickness of 25
mm. Both loads are uniformly distributed loads - vertical and horizontal respectively.
The geometries are constructed as explained in section 4.2.1 and are baked to Robot by GG
with section properties applied. Supports are assigned in Robot and loads are applied to the
surfaces. Once the GH script is created the whole process from geometry to finite element
model in Robot is significantly faster than creating the geometry from scratch directly in
Robot.

5.2 Vertical Load Comparison

Deflections, membrane forces and bending moments in figure 5.1 are found at the vertex of
the geometries which is also where the maximum vertical deflection is found for the shell
structures exposed to a uniformly distributed vertical load. It should be mentioned that
the nine different structures are all exposed to the same resulting vertical force since the
distributed loads have been adjusted to the given surface areas of the nine geometries.
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Figure 5.1: Deflection table - uniformly distributed vertical load
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Interestingly the shell structures with outwards directed base geometry (structure 04 -06 )
secures a smaller deflection than the structures with vertical supports (structure 01 -03 ).
Structure 07 with inwards base geometry experiences an increase in the vertical deflection
of about 50%. All structures with zero curvature at the vertex and concave curvature at
the vertex (02, 03, 05, 06, 08 and 09 ) result in deflections of relative sizes that are too
large to even consider implementing in an actual construction without supporting the shell
structures by secondary structural systems. For structure 02, 04 and 06 the large deflections
are directly related to the large bending moments while the large deflections for structure
03, 06 and 09 are related to the discontinuity in curvature at the edge of the concave areas.
Comparing the membrane forces of the convex and concave geometries shows that the upper
part of the convex geometries are in compression as opposed to the tension found at the
vertex of the concave geometries hence a the Gaussian curvature controls the operational
sign of the membrane forces.
Since not only perfectly convex shell structures will be used further on in this project the
convexity and concavity-investigation in section 5.4 will seek to investigate how the deflec-
tion develops when going from a convex to a planar upper part of the hemisphere in greater
detail than done in figure 5.1.

5.3 Horisontal Load Comparison

Nine geometries similar to the ones investigated in the previous section have been analysed
in regards to horisontal loading - imitating a wind load pressure on the geometries. More
specifically a uniformly distributed horizontal load of 1MPa. All geometries have been ap-
plied section properties with a thickness of 25 mm and S235 steel as the section material.
Figure 5.2 on the following page shows the deformation shapes, the maximum total deflec-
tions and presents the relative deflection factor of the various geometries. The hemisphere
is the reference geometry in this regard.

[See next page for illustration]

Again it must be concluded that the structures with concave curvature at the vertex are less
suitable for load carrying purposes when exposed to a horisontal load though the relative
deflection factors in this section are not as large as found for the vertically distributed load.
However, the geometries with planar areas around the vertex are quite stiff when exposed to
a horisontal distributed load. By comparing the deflections from 5.1 it seens that the load
direction towards the planar areas is of great importance when considering the stiffness of
these geometries.
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Figure 5.2: Deflection comparison table - uniformly distributed horisontal load. Deformartion figures of varying
scale.
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5.4 Convexity and Concavity Investigation

From the previous investigations it was concluded that the curvature of the shell structure is
of great importance when it comes to the overall stiffness. In continuation of these first steps
a more detailed investigation of the behaviour of the structure in regards to a convex and
concave upper part is carried out. Due to the interoperability between Rhino, Grasshopper
and Robot by the use of GeometryGym the finite element models are generated faster than
otherwise possible directly in the Robot interface. A total number of 22 shell structures,
generated parametrically from the script described in section 4.2.1 have been investigated.
The nature of the alteration of the geometry is shown in figure 5.31.

Figure 5.3: Convex and concave geometries.

The vertex of the geometry in the investigation goes from a concave geometry with a center
height of 4,5 m to a convex geometry with a center height of 7,5 m in 22 steps. All geome-
tries are exposed to a uniformly distributed vertical load of 1 MPa and have been applied
with a 25 mm S235 steel cross section. Exact values of the deflections, membrane forces and
bending moments can be found in appendix C.1.

1Please note that more geometries than the ones shown in figure 5.3 have been investigated.
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5.4.1 Results

To investigate how the upper geometry of the shell structures influence the section forces
and hence the deflection the two following diagrams have been generated. The diagrams
illustrate the maximum deflection compared to the membrane forces and bending moments
respectively at the vertex of the geometries.

Figure 5.4: Deflection vs. membrane force.

Figure 5.5: Deflection vs. bending moment.

It is seen from figure 5.4 and 5.5 that the deflection escalates when the upper part of the
structure is flattened. As mentioned earlier in this report the stiffness of the shell structure
is relative to the curvature of the shell geometry. The curvature at the vertex is approxi-
mately zero when the height of the rotation point is between 6,0 m and 6,3 m which is also
where the structure reaches the largest vertical deflections. When the upper part of the
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shell structure is flattened the structure behaves as a plate which means that the bending
moments are increased and the membrane forces are reduced. Large bending moments will
result in large deformation for a thin shell like this.

Interestingly the shell structure still experiences large deformations when the bending mo-
ments are reduced for the concave geometries (height of centre of rotation: 4,5m to 5,5m).
From the above argumentation the shell structure regains its stiffness when the curvature
is increased for the concave structures. However, the explanation for the large deflections
can be found at the curvature discontinuity around the edge of the concave area where the
tangent of the shell curvature is perpendicular to the load direction. This is where the shell
deflects for the concave geometries which results in a vertical deformation of the upper part
of the shell as a whole.

To sum up neither planar and concave areas on the shell structure are unfavourable in
regards to the overall deflection of the structure. The hemisphere is the stiffest of the inves-
tigated structures while the convex, but not perfectly hemispherical structures, experience
deflections not too far from the optimal hemisphere. A more detailed deflection curve for
the convex geometries can be found in figure 5.6.

Figure 5.6: Deflection of convex geometries.
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Chapter 6

The Batumi Aquarium

Inspired by the characteristic pebbles of the Georgian Black Sea coastline the Batumi Aquar-
ium will stand out as an iconic rock formation visible from both land and sea.
The Batumi Aquarium is designed by Henning Larsen Architects in collaboration with Buro
Happold and Blu Technologies and holds four exhibition areas all representing different ma-
rine biotypes - the Mediterranean, the Black Sea, the Aegean Sea and the Indian Ocean.
The four exhibition areas are connected by a centrally located atrium well suited for pre-
sentations and workshops. The atrium will also hold a café and retail functions along with
playing areas for children.
The aquarium has a size of 2000 m

2 and will become a modern, cultural aquarium serving
both exploration and education that will stand out as a new Georgian landmark.

6.1 Structural Overview

The complex shapes of the pebbles make the design of the aquarium distinctive and elegant.
This complex shape however, is also what makes the structural aspects of the dimensioning
process challenging.
The proposal for the structural system of each pebble - if considered separately - could be
shell structures, but the fact that the lower pebbles support the upper pebble might result
in a different approach.

The client has expressed a wish to use reinforced concrete for the structure and a num-
ber of different approaches to this is listed:

• Formwork-cast concrete.

• Sprayed concrete (shotcrete).

• Steelwork frame with concrete fill-in.

In the material selection process factors such as availability, cost and local labour must be
considered. It has been expressed from the client that skills in sprayed concrete are locally
available.
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The aquarium is located directly on the Black Sea coastline in Georgia which means that con-
siderations in regards to corrosion of materials, in this case mainly the reinforcement, must
be taken. Sufficient concrete cover in accordance with the Eurocode 2, [16], must be applied.

This report focuses on the structurally complex pebble B highlighted in figure 6.1. The
large span and concave parts of this pebble makes it the most complicated structure of the
six pebbles when considered separately. All loads acting on this structure are considered
including the self-weight and imposed load from the upper pebble. The contact area be-
tween pebble A and B is a natural point of weakness and considerations into how the load
is transferred through this area will be expressed in part III.
Figure 6.1 highlights the location of pebble B in relation to the remaining building sections
of the aquarium.

(a) Top view. (b) Elevation view.

(c) Perspective.

Figure 6.1: Pebble B highlighted.

Pebble B has an approximately circular footprint with a diameter of 30m - 40m and a height
of 16,5m. The geometry of pebble B will be examined in greater detail later in the report.
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6.2 Project Restrictions

The investigations carried out in the remaining part of this report is subject to the following
restrictions:

1. No columns
It is decided that columns will not be included as a structural solution. This is mainly
because of aesthetic reasons but also because this report focuses on shell theory and
investigates the thin shell behaviour, which is of less importance if supporting columns
are included.

2. Foundation and installations not considered
The report will not go into detail with the foundation of the construction just as
mechanical, electrical and plumbing considerations are left out of the scope of the
project.

3. No pretensioning
Pretensioning is ruled out as a solution in this report mainly as a result of the project
description where it is stated that flexural reinforcement is preferred.

4. Entrances not investigated
Pebble B has two entrances in the surface geometry but these are not included in
the investigation and the pebble is treated as a smooth surface. This decision is
made mainly to simplify the various investigations but also because it is estimated
that the given membrane forces and bending moment around the entrances can be
counterbalanced by a strengthening of the cross section around the entrances. A
solution to a strengthening of this kind could be hidden steel beams/frames within the
concrete cross section. The rendering in figure 6.2 shows the nature of the entrances
to the different pebbles.

Figure 6.2: Rendering from the interior of The Batumi Aquarium by Henning Larsen Architects.
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Chapter 7

Tools

The following sections will present six different tools developed in this project in an attempt
to clarify the behaviour of the force and stress flow in shell structures. All tools are developed
in Grasshopper and can be used for any given shell structure with the output data from
Sofistik mentioned in section 1.3. To make the comparison of the different scripts easier all
examples of plots from the scripts in the following sections is kept to the case of a hemisphere
exposed to a downwards vertical uniformly distributed load over the entire shell surface as
illustrated in figure 7.1.

Figure 7.1: Geometry and load distribution for script examples.

7.1 The Geometry Analysis Tool

By dividing a given geometry into a rectangular grid of surface points it is possible to calcu-
late the principal osculation circles in each point. The radius of each circle is evaluated with
an adjustable lower limit, all points where both radii exceeds the limit are then represented
on the surface.
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(a) Rectangular grid of surface points (b) Points where both radii exceeds the limit

Figure 7.2: The Geometry Analysis Tool

In order to discover planar areas the lower limit for the radii should always be set according
to the overall size of the evaluated geometry. In figure 7.2b the lower limit is set to two
times the base diameter and therefore relatively planar areas are discovered.

7.2 The Quad Colouring Tool

In an attempt to get a clear overview of the stresses in a given shell structure a tool that
differs between quads in tension and quads in compression is developed. The tool needs the
geometry data for all quads from Sofistik as well as the local stresses for every quad. Figure
7.3 shows the output of the quad colouring script when set to illustrate the first principal
stress �

I

for the top layer of the hemisphere.

(a) Top view. (b) Perspective.

Figure 7.3: The Quad Colouring Tool. �

I

. Top layer.
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7.3 The Stress Vector Tool

In continuation of the quad colouring tool it was regarded necessary to have a better overview
of the directions of the stresses in addition to the tension/compression differentiation. The
inputs are still the geometry data along with the local stresses. The local stresses, �

X

and �

Y

, always act in the local x-direction and the local y-direction respectively while the
directions of the principal stresses needs to be calculated according to equation (7.1).
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is the angle between the local x-direction and the direction of �
I

.
The Stress Vector Tool offers the possibility of choosing between plotting the direction vectors
as unit vectors with no regard to the actual size of the stresses and plotting the direction
vectors with amplitudes related to the size of the stresses. The two variations are illustrated
in figure 7.4 and figure 7.5. Again the case illustrated is the first principal stress, �

I

, for the
top layer of the hemisphere.

(a) Top view.

(b) Perspective.

Figure 7.4: The Stress Vector Tool - Unit Vectors. �

I

. Top layer.
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(a) Top view.

(b) Perspective.

Figure 7.5: The Stress Vector Tool - Amplitude Vectors. �

I

. Top layer.

7.4 The Stress Vector Amplitude Tool

It was found that the stress vector tool introduced in the previous section was informative
but confusing and not very clear in differing between tension and compression stresses. A
combination of the two tools already introduced was sought resulting in the development
of the Stress Vector Amplitude Tool. The tool illustrates the chosen stress as a coloured
rectangle perpendicular to the quads on the hemisphere surface. A red rectangle means that
the quad is in tension while a green rectangle means the quad is in compression. The height
of a given rectangle corresponds to the size of the stress in that quad - relatively compared
to the sizes of the remaining stresses in the structure. Figure 7.6 illustrates the graphical
output from the Stress Vector Amplitude Tool.

(a) Top view. (b) Perspective.

Figure 7.6: The Stress Vector Amplitude Tool. �

I

. Top layer.
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7.5 The Principal Stress Trajectory Tool

Finally an attempt to illustrate the so-called principal stress trajectories was carried out.
Principal stress trajectories can be described as a contraction of a vector field into paths
or lines that illustrate the direction of the sum of the principal stress vectors. Practically
in the case of reinforced concrete the principal stress trajectories of a structure describe
the optimal path or mesh of reinforcement bars in the structure - if the stress trajectories
are reduced to illustrate the contraction of principal tension stresses. A thorough study of
principal stress trajectories is not within the scope of this report but the script developed
still illustrates the paths of the principal stress and works for any given shell structure
that has been investigated in Sofistik. The script offers the possibility of choosing between
stress trajectories for tension and/or compression stresses. The target spacing between the
trajectories can also be altered within the script. Figure 7.7 shows the stress trajectories
for the same hemisphere, load and concrete layer as in the scripts presented earlier in this
chapter.

(a) Top view. (b) Elevation view.

(c) Perspective.

Figure 7.7: The Principal Stress Trajectory Tool. �

I

. Top layer.
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7.6 The Cross Section Design Tool

From the previous tools a good indication for placing the flexural reinforcement in an op-
timum manner is obtained. However, the plot achieved from the principal trajectory tool
only indicates a solution for placing the reinforcement in the principal stress direction. In
practical the reinforcement is often placed regarding a more uniform mesh, for instance in
a orthogonal mesh. This is primary done to ease the structural design and the construction
phase. From this assumption the design of the cross sections have been conducted regarding
the local cross section forces.

In order to ease the design and construction of a concrete structure as few cross-sections
as possible, and still obtain an economical material consumption, is favourable. Therefore,
a parametric cross section design tool is developed. The design principals are based on
the approach described in section 10.2. The cross-section design is conducted according to
design variables such as: thickness, steel yield strength, concrete compression strength, rein-
forcement diameter, concrete cover and minimum and maximum reinforcement.
In figure 7.3 it was seen that almost the bottom half of the reference hemisphere is sub-
jected to tension in the circumferential direction which indicate a need for reinforcement.
The cross section design tool calculates, for each quad, the needed numbers of reinforcement
bars per meter for both top and bottom layers in local directions. The interval of bars in
each direction is divided into four equally segments and the quads are coloured according to
the segments.

(a) Elevation view.

Figure 7.8: Number of reinforcement bars in local x direction. Top layer.

In figure 7.8 each color represent a minimum of reinforcement bars. White indicates !
min

and
red indicates the area with the largest needed number of reinforcement bars. Furthermore,
indicate the tool if the needed compression zone of the concrete exceeds half of the cross-
section thickness.
Hereafter, the design variables and the number of bars in each direction are adjusted to
optimise both reinforcement mesh and cross-section thickness.
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7.7 Summary

The six different tools are developed en route in order to visualise analysis results and hereby
obtain a better understanding of the results. All tools have evolved from different analysis
problems within the studies of shell structures. In the remaining sections three tools will
be used: The Geometry Analysis Tool, The Principal Stress Trajectory Tool and The Cross
Section Design Tool. The remaining tools however, are still included in this chapter due to
the fact that they act as predecessors for the three mentioned tools.
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Chapter 8

Structural Optimisation

The main criterion for all engineers or designers hired to execute a task is to come up with
at least one feasible design or solution. Traditionally the first idea for a solution or design
originates from experience or personal intuition. However it is very rare that this procedure
in general will lead to the best solution or design [13].
Over the past 50 years [13] different methods and techniques have been developed in order
to obtain the best (optimal) design according to a specific task. Both computational algo-
rithms such as Genetic Algorithms (GA) [17], which has shown to be a very efficient tool for
complex problems with many variables, and management procedures such as an integrated
design process can be mentioned as improvements to achieve the optimal design. However
an optimisation process can often be intangible for the involved parties. Design variables
are often many and can be constrained by each other. In figure 8.1, Arora, has tried to
summarise the steps of an optimisation design process and the traditional design process.
Step zero, four and five are different from the traditional design process. At first the design

variables according to the target optimisation area are identified and sorted by dependencies.
A very important step in the optimisation process is number four. At this point the design
has to satisfy a target criteria and no longer just a feasible design. The optimisation method
in step five is normally based on the target optimisation area, constraints and the overall
optimisation process and is facilitated by techniques ranging from a single spreadsheet to
involving whole organisations [13].
The optimisation process is often termed as a sequential search and characterized by the fact
that future trial designs may be generated by using the results of the previous designs [13].
In such a process designers and engineers are dependent on a flexible and reliable method
which enables the study of different designs in a relatively short timespan. A method, which
from the authors point of view, can be facilitated by parametric modeling techniques and
data interoperability between software packages.

However, in practice these different techniques do not always lead to a global optimum given
that design variables can be governed by subjectivity. Optimising one target area in a system
can lead to a negative effect on others. Therefore one could always question a chosen design
by the omission of design variables. In the following section the optimisation process in
figure 8.1 is applied on the Batumi pebble B in order to conduct an optimisation method.
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Figure 8.1: Arora’s optimisation process [13].

8.1 The Optimisation Process for Batumi Pebble B

As mentioned the design variables for a global optimal design are almost infinite. The case
is no different for the Batumi pebble B where different optimisation areas such as: con-
structability, modularity, material consumption, design and aesthetics, functional require-
ments, cost and structural performance all require a set of different design variables. How-
ever, even with a set of different design variables, none of the mentioned optimisation areas
are independent and therefore can not be optimised without having a potential consequence
elsewhere in the design. In figure 8.2 an imaginary and simplified optimisation sequence for
pebble B is illustrated.

Figure 8.2: Imaginary optimisation trials for pebble B.

The five steps from the initial design to a cube illustrated in 8.2 indicate the extreme case
of an optimisation process, where the cube would be picked as the optimal design regarding
most optimisation areas except for design and aesthetics and perhaps functional require-
ments. However, from a clients and architects perspective the design and aesthetics are
normally of great importance and should not be neglected. Based on this assumption opti-
misation areas such as constructability, modularity, cost and functional requirements will not
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be examined. This is done in order to limit the scope of the optimization process conducted
in this report.
The target optimisation area in this report will instead be the structural performance of
pebble B. The structural performance should be seen in relation to the geometrical shape
and preferably result in a shape that facilitates shell structures and still maintains a unique
design. The structural performance will be quantified in terms of material consumption of
concrete and reinforcement steel. In figure 8.3 the constraints of the optimisation process1
regarding structural performance and design are illustrated.

Figure 8.3: Constraints for the different design variable.

The main design variable is hereby the geometry of pebble B whereas the design criteria
is the material consumption. By developing an optimisation method where a parametric
modelling technique of the geometry is interactive and automated to a large degree with
the structural analyses the sequential search is smoothened. A description of the parametric
model will be conducted in section 8.2.

8.2 Parametric Model of Pebble B

In accordance with the observations done in part I the optimisation will aim to reduce the
concave and planar areas in the upper part of pebble B while the base geometry will remain
unchanged. This approach ensures that the optimised geometry is kept close to the aesthetic
expression of the originally proposed geometry by Henning Larsen Architects.
To reduce the concavity of the original geometry or even get rid of the concave areas com-
pletely a parametric Grasshopper script is developed. The full script can be seen in appendix
F.1.
The first step of the script is to make the surface manipulable. This can be done in many
ways but for this particular geometry it is estimated that a suitable approach is to make
a number of vertical planes cut the geometry and use the resulting intersection curves for
further altering. The intersection curves can be seen from figure 8.4.

1The arrows indicate the flow of the optimisation process.
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Figure 8.4: Intersection curves for the original geometry.

To fulfil this requirement to keep the optimized geometry close to the original design one of
the intersection curves from figure 8.4 is chosen as the reference curve for the further changes
made to the surface. In this example the curve seen in figure 8.5 is chosen.

Figure 8.5: Chosen reference curve.
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The coloured section of the reference curve will be the reference for the optimisation of the
upper part of the pebble B geometry. The part is chosen since it does not contain any
concave sections and has a relatively constant curvature along its length. The lower part
will not be targeted in this investigation but could be manipulated in the same way as it is
the case for the upper part.
When the reference curve is selected the degree of similarity between the upper part of all
intersection curves from figure 8.4 and the reference curve from figure 8.5 can be altered.
The script works within the input range of zero to one where zero will return the original
geometry while one will apply the same curvature as upper part of the reference curve to
all upper parts of the intersection curves. Four steps2 from the concave intersection curve
towards the reference curve can be seen in figure 8.6.

Figure 8.6: Varying curve geometries in steps towards the reference curve from figure 8.5.

When all intersection curves are changed into having the same curvature as the reference
curve the script can not alter the geometry further. The curves of this geometry - the opti-
mised geometry - can be seen from figure 8.7

2Input values of 0,25, 0,50, 0,75 and 1,00 respectively.
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Figure 8.7: Intersection curves for the original geometry.

To compare the two geometries - the original and the optimised geometry - the curves are
lofted3 to make continous surfaces ready to export to Sofistik.
The two shell surfaces can be seen from figure 8.8.

(a) Original geometry. (b) Optimized geometry.

Figure 8.8: The original and optimised geometry.

It is seen from figure 8.8 that the optimisation was successful in regards to minimising the
concave and planar areas in the upper part of the structure. The following chapter will verify
analytically whether or not this optimisation has resulted in a more efficient shell structure
in regards to curvature.

3A Grasshopper/Rhino command that "drags" a surface over various curves.
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Geometry Analysis

As seen from section 5.4 the efficiency of a double curved shell structure is highly related to
its curvature. From the investigation in chapter 5 it was observed that small adjustments
of the curvature of a shell structure will have a large influence on the membrane forces and
bending moments in the shell structure. Figure 5.4 and 5.5 in section 5.4.1 indicate that
especially planar areas1 on a shell structure will experience an increase of bending moments,
hence areas with large curvature can be characterised as plates.
In the following sections a method for discovering planar areas on a geometry is presented.
The analysis is based on the same conditions as in the investigations of hemispheres in part
I and applied on the Batumi pebble B under the assumption that it can be treated as a
hemisphere.

9.1 Curvature Analysis

The most common way to perform curvature analyses of geometies is in terms of Gaussian
curvature where the three classifications; negative, positive and zero makes it possible to
classify a geometry or just areas of a geometry as double curved (convex or concave) or
single curved (cylindrical). Hereby, the Gaussian curvature makes it possible to analyse
the change in curvature of a geometries seen in figure 9.1 where a Gaussian plot of three
geometries from section 5.4, hemispheres with a vertex height of 4,5 m, 6,3 m and 7,5 m,
has been performed in Rhino. The colour scaling indicates a curvature going from convex
(positive) to concave (negative).

Figure 9.1: Gaussian curvature analyses in Rhino.

1Vertex area of geometries with a center height around 5,7 m to 6,3 m.
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As seen from figure 9.1 the ’perfect’ hemisphere, a, has a positive uniform Gaussian curva-
ture all over the geometry. From the hemisphere with a planar area at the vertex,b, it is
seen that the Gaussian curvature is approximately zero at the vertex. The third figure, b,
shows all three Gaussian curvature classifications, going from single curved through convex
to concave. Besides the change in curvature the plot also shows a quite significant level of
discontinuity at the vertex seen as sharp colour changes. This is however due to the revolve
technique used in Rhino.

By comparing geometry b and c it is noticed that the light blue area (K ⇡ 0) appears
at both geometries, this is due to the fact that both single curved and planar areas will
possess the same Gaussian curvature value as long as the product of the two principal radii
are the same. However, a planar area has no spatial stiffness due to the zero curvature.
Therefore such areas have the same characteristics as a plate in regards to resisting trans-
verse loads mainly by means of bending and with a flexural stiffness depending greatly upon
the thickness of the plate. A reduction of the planar areas is therefore of great value when
working with double curved shell structures. Nevertheless it can be very difficult, if not
impossible, to predict planar areas only from a Gaussian curvature analysis.

From the previous observations it can be stated that there is a need for a method where
both planar areas and geometrically discontinuities are discovered. In the following sec-
tion a geometrical analysis method will be conducted from the results obtained through the
investigation of a hemisphere performed in section 5.4.1.

9.2 Method for Analysing Planar Areas

The principal radii of a planar area is defined as being infinite:

R

C1 = R

C2 ⇡ 1

However, from figure 5.4 and 5.5 the deflection increases greatly even before the principal
radii have reached an infinitely large value. Therefore the curvature at the vertex of the
different geometries is analysed in relation to the deflection at the vertex. By making such
a relation it is possible to analyse the maximum principal radii for approximately planar
areas and still obtain a reasonable stiffness of the area.
In figure 9.2 the relation between the deflection and the principal radii2 have been plotted.
Only the sequence going from a convex towards a planar upper geometry has been plotted.

2Due to symmetry RC1 and RC2 are equal.
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Figure 9.2: Deflection and principal radii for the different hemispheres.

It is seen that the deflection and the principal radii are increased with an almost equal ratio.
This observation is only valid for a hemisphere exposed to a transverse loading hence the
relation is not valid for a geometry like c in figure 9.1 where both convex and concave areas
are present. In this case the deflection of the concave area is governed by the large changes
in curvature surrounding the concave area. In table 9.1 the ratios3 between the principal
radii and the deflections are calculated.

Table 9.1: Principal radii and vertical deflection.

Height [m] R
C1/RC2[m] Ratio Deflection [mm]

7,5 7,5 1 19,09
7,2 9,19 1,2 23,51
6,9 14,6 1,9 36,73

6,825 17,3 2,3 43,45
6,75 21,2 2,8 54,25
6,675 27,6 3,7 71,40
6,6 39,7 5,3 101,58

6,525 71,7 9,6 153,37

Table 9.1 provides an indication of the maximum principal radii of an area in order to obtain
a satisfying stiffness. For instance if an area with fairly large principal radii is exposed to
a large deflection the stiffness of this area can be improved by reducing the principal radii
with a ratio indicated in table 9.1. This statement is as mentioned based on investigations
of hemispheres, therefore only valid for geometries that are comparable to the shape of a
hemisphere!
From the investigation a maximum principal radii is qualitatively set to 20 meters for a
geometry with a shape relatively similar to a hemisphere with a radius of 7,5 meter. Hereby,
making it possible to analyse the geometry for relatively planar areas before a structural

3R1C1/R2C1 = 7, 5/9, 19 = u1/u2 = 19, 09/23, 51 = 1, 2. The hemisphere with a height of 7,5 m is set
as the reference geometry.
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analysis is carried out. In the following figure the planar areas at the four lowest geometries
from table 9.1 and geometry c from figure 9.1 can be seen. The planar areas are visualized
by red dots and indicate an area with principal radii exceeding 20 meters.

Figure 9.3: Planar areas for different geometries.

Figure 9.3 shows that the planar area around the vertex is increased as the center height is
reduced. By combining the method for planar areas and the changes in curvature in terms
of Gaussian curvature, figure 9.4, it is possible to perform a detailed geometry analysis and
identify areas of special focus before the structural analysis is carried out.

Figure 9.4: Planar areas and Gaussian curvature analysis for different geometries.

A preliminary geometry analysis as in figure 9.4 indicates a discontinuity in the upper part
of the first geometry and planar areas in the rest. Both being unfavourable for a shell
structure and can result in high bending moments. In the following section the method for
analysing planar areas is combined with a Gaussian curvature analysis in order to perform
a geometrical analysis of pebble B in the Batumi Aquarium.

9.3 Geometry Analysis of The Original Geometry

The method developed in the previous section is only valid for geometrical shapes compa-
rable to a hemisphere. Figure 9.5 illustrates that pebble B is approximately shaped as a
hemisphere with a radius of 17.5 meter.
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Figure 9.5: Pebble B compared to a hemisphere.

By making the assumption that pebble B has an overall shape of a hemisphere it is possible
to analyse the geometry for planar areas. The ratio between the radius of the reference
hemisphere (7,5 m) and pebble B (17,5 m) is 2,33. The maximum principal radii for pebble
B is then qualitatively determined as:

20meter ⇤ 2, 33 ⇡ 47meter

In figure 9.6 areas on the pebble B geometry with principal radii of 47 meter or more is
indicated along with the Gaussian curvature analysis.

Figure 9.6: Planar areas and Gaussian curvature analysis of the original geometry.

From figure 9.6 the planar areas are located in the two concave areas and in a small area on
top of the geometry. Under a transverse loading these areas will experience large bending
moments and therefore be unfavourable terms of the stiffness of the shell structure. The
Gaussian analysis uncovers changes in curvature around the belt of the geometry and espe-
cially around the black area where relatively convex and concave areas are located side by
side. These areas will affect the overall efficiency in regards to material the consumption
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of the shell structure. The optimised geometry is analysed under the same conditions as in
section 9.4.

9.4 Geometry Analysis of The Optimised Geometry

As seen from figure 8.8 the upper part of the optimised geometry appears to be convex at first
sight. Compared with the original geometry, where unfavourable areas are obvious, no areas
at the upper part can visually be determined as weak areas. Therefore, in order to obtain a
more detailed evaluation of the optimised geometry it has been analysed with The Geometry
Analysis Tool where both planar areas and curvature discontinuity has been investigated.
The analysis will be performed under the same conditions as the original geometry, hence
a principal radii of 47 meter or larger is indicated together with the Gaussian curvature
analysis.

Figure 9.7: Planar areas and Gaussian curvature analysis of the optimised geometry.

In figure 9.7 the geometry analysis uncovers four areas which could not have been predicted
by a visual inspection. The upper part still contains some areas which are unfavourable
for the shell structure even though it has been modelled based on a reference curve with no
discontinuity. This observation indicates some of the difficulties encountered when modelling
an ideal geometry in terms of structural performance for a project as The Batumi Aquarium.
By comparing figure 9.6 and 9.7 it is seen that two of the planar areas are located almost
identically on the two geometries. This indicates that the earlier concave areas are still
weak areas at the optimised geometry. The planar area found at the vertex is caused by the
used revolved curve modelling method if the reference curve has a horisontal tangent at the
vertex.
A clear reduction in the change of curvature has been made for the upper part of the
geometry. No areas are concave4 which induce a uniform change in curvature. It is hard
to predict from the analysis if the planar areas will have the same consequences for both
geometries due to the difference in the curvature of the two geometries. In chapter 12 a
structural analysis will be carried out, hereby making it possible to verify the conclusions
made in this geometry analysis.

4Area of dark blue colour.



Chapter 10

Theory of Dimensioning

The dimensioning of the shell structure will be conducted by the limit state method, where
the two principal states are the ultimate limit state (ULS) and the serviceability limit state
(SLS). The design of the reinforced concrete is based on the ULS and the loading correspond-
ing to this state and followed by a check to ensure that the structure is adequate for the SLS.
The ULS is carried out under conditions according to a linear elastic behavior whereas the
SLS is under conditions according to non-linear plastic behavior. In the following sections
the general analysis parameters will be described.

10.1 General Analysis Parameters

In the present section the different analysis parameters such as boundary conditions, local
coordinate system, material properties and design requirements for both the linear and
non-linear analysis are described. Each analysis will be conducted according to identical
conditions and executed in Sofistik. The design requirements will cover both the ULS and
SLS analysis and will be determined according to the Eurocode 2, [16].

10.1.1 Boundary Conditions

The boundary conditions have been chosen from the assumption of a degree of movement at
the supports in order to obtain the thermal expansions in the concrete. Therefore boundary
conditions identical with the boundary conditions for the analytical hemisphere are used,
see figure 3.2, and can be described as hinged with free movement in the normal direction
of the shell. As mentioned in section 3.2 these boundary conditions facilitate that bending
moments at the base are avoided to a large degree. However, a large circumferential force is
generated at the base. In Sofistik the boundary conditions are modelled as restraining the
finite elements in the local x-direction and the global z-direction.
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Figure 10.1: Illustration of boundary condition in Sofistik.

Figure 10.1 illustrates the boundary conditions in Sofistik - the dark lines represent restric-
tions in the local x-direction and free movement (red arrow) in the normal direction.

10.1.2 Material Properties

The main materials for the shell structure are concrete and reinforcement steel. Additionally
structural steel is used for the secondary structure. In order to ease the construction phase of
the shell structure shotcrete was mentioned as a possible substitute for conventional concrete.
In the further analyses conventional concrete will be used since it has similar properties to
shotcrete regarding strength, creep and shrinkage[18]. The material properties are listed in
table 10.1.2, 10.1.2 and 10.1.2.

Table 10.1: Concrete properties.

Concrete C35 Value
Compression strength f

ck

35 MPa
Tension strength f

ctm

3,2 MPa
Elastic modulus E 34 GPa
Poissons ration ⌫ 0,2

Temperature coeff. "

t

1e-5 1/K
Self weight 25 kN/m3

Safety factor �

c

1,45

Table 10.2: Steel reinforcement properties.

Reinforcement S550 Value
Yield strength f

yk

550 MPa
Elastic modulus E 200 GPa
Poissons ration ⌫ 0,3

Temperature coeff. "

t

1,2e-5 1/K
Self weight 78,5 kN/m3

Safety factor �

c

1,2
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Table 10.3: Structural steel properties.

Steel S235 Value
Yield strength f

yk

235 MPa
Elastic modulus E 210 GPa
Poissons ration ⌫ 0,3

Temperature coeff. "

t

1,2e-5 1/K
Self weight 78,5 kN/m3

Safety factor �

c

1,2

10.1.3 Local Coordinate System

It is verified that the local coordinate systems of the meshed shell structure is in accordance
with the theoretical local coordinate systems of a shell of revolution - horizontal x-axis and
vertical y-axis.

Figure 10.2: Close-up of local coordinate systems (Red arrow: local x-direction. Green arrow: local y-direction).

10.1.4 Design Requirements

According to Eurocode [16] the basic requirements, besides structural resistance, are ade-
quate resistance in: Serviceability, durability, exposure to fire and events such as: Explosion,
impact and human errors. Furthermore the structure should have a working life in accor-
dance with the usage of the structure. Due to the limitations of the report and a main focus
on the geometrical and structural optimisation only, some of the requirements have been
examined. Table 10.4 shows the different requirements considered for the structure.

Table 10.4: Design requirements for The Batumi Aquarium.

Requirement Criteria
Structural resistance �

Ed

 �

Rd

Maximum deflection 30mm
Crack width in concrete 0,3 mm

Concrete cover 35 mm

Finally, The Batumi Aquarium is categorised as CC3, High Consequence Class, due to the
fact that it is used for exhibitions and possibly holds a lot of people. Regarding requirements
for durability, fire and robustness no further considerations will be made.
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10.2 The Linear Analysis Approach

For the shell structure a linear analysis will be conducted in Sofistik according to the loads
and load combinations described in chapter 11. Regarding the secondary structure a linear
analysis will be performed in Robot. The initial reinforcement design will be performed by
the Cross Section Design Tool presented in chapter 7 according to the section forces from
Sofistik. The design is based on the principle of traditional orthogonal plate reinforcement.
A rectangular stress-strain relationship is used to idealise the actual stress distribution and
the use of the simple stress-strain relationship will result in an extra conservative solution,
hence higher consumption of resources. The amount of reinforcement is calculated under
the circumstance of pure bending with a cracked cross-section, hereby ignoring the tension
zone in the concrete. Furthermore, any compression reinforcement is ignored which eases
the calculations and gives an extra safety margin. In the case of membrane tension forces
the contribution is added by superposition. The needed reinforcement is calculated for each
quad element in the geometry. Design equations implemented in the tool are listed below.

µ =

M

Ed

bd

2
f

cd

(10.1)

! = 1�
p
1� 2µ (10.2)

A

s

= !

bdf

cd

f

yd

(10.3)

A

s.tot

= A

s

+

N

Rd.tension

fyd

(10.4)

Requirements regarding a minimum reinforcement is determined by the maximum spacing
(s

max,slabs

) of the reinforcement and is 2h or 250mm in both directions, this is due to the
assumption that the shell structure is categorised as a two-way slab. The upper boundary
for a maximum amount of reinforcement in the cross section is set to !

bal

1 . Under this
condition the failure occurs with yielding of the tension steel and crushing of the concrete
at the same time and is described as a balanced failure. Both requirements have been im-
plemented as restrictions in the design tool.
The shear capacity of the shell structures will be performed conservatively under the as-
sumption of a non-reinforced concrete cross section. The shear stresses should fulfil:

v

Ed

 0, 5 · v
v

· f
cd

(10.5)

Where v

Ed

is the shear stress and v

v

is the shear efficiency factor[10].

10.3 The Non-Linear Analysis Approach

A non-linear analysis of the structure, based on the materials non-linearity, has been per-
formed in Sofistik. The analysis is based on an iteration process where every step determines

1!bal = 0,483 for fyk =550MPa and C35 concrete.
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the displacement and stresses. It is checked whether plasticising, cracks or any other non-
linear effects have occurred in any of the quad elements. The stiffness of quad elements where
second-order effects have occurred are reduced in the following step and the initial loading
is increased with a load referred to as the residual forces2 of the structure in Sofistik. The
analysis is performed according to the standard setup in Sofistik and the different parameters
are listed in table 10.5.

Table 10.5: Design parameters for non-linear analysis.

Design Parameter Value
Creep Factor "

c

2
Shrinkage Coefficient "

s

3e-4
Tensile Strength Concrete f

ctd

1.55 MPa
Tensile Strength Reinforcement f

t

620 MPa
Iterations 90

For the non-linear analysis in SLS the following requirements are examples of what can be
of interest:

• Deformation.

• Crack width.

• Concrete compressive stresses.

• Reinforcement steel stresses.

However, only in a complete analysis all factors will be examined and specified in detail. In
this case the analysis of the structure will be carried out only according to the requirement
of a maximum deflection of 30 mm. Results in regards to the remaining requirements will
be specified but not further targeted.

2The residual forces are the forces which have not been balanced by the internal forces.
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Chapter 11

Loads

This chapter will present the loads acting on pebble B and explain how the shell geometry is
subdivided into areas according to these loads in an attempt to simplify the following finite
element analysis. Finally the basic load combinations according to [15] will be explained
and a simplified load combination for the remaining structural dimensioning in this report
will be presented.

11.1 Self Weight

The self weight is based on [15] and acts in the global z-direction along the geometry of
pebble B. The self weight is applied through Sofistik where the standardized density of
reinforced concrete is set to 25kN/m3

.

11.2 Imposed Load

The analysis setup for this assignment will not include any imposed load on the shell struc-
ture. Imposed loads from i.e. ventilation, lighting and other installations are not considered.
The reaction from the self weight and imposed load from pebble A that is supported by peb-
ble B will be treated in Part 3.

11.3 Snow Load

The snow load is based on [15]. The assumptions presented in the Danish National Annex
are used and the characteristic snow load is set to a value of 0,9kN/m

2. The snow load
is only applied to the section of the roof where the slope is less or equal to an angle of 60
degrees. The Danish National Annex proposes two different load distributions as illustrated
on figure 11.1: An evenly distributed load and a triangulated load distribution. The snow
load in this analysis is simplified to only incorporate the evenly distributed load.
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Figure 11.1: Illustration of snow load on cylindrical roofs. [15]

The resulting snow load is then found from the following expression:

S = µ · C
e

· C
t

· s
k

(11.1)

C

e

is chosen to be 0,8 for windswept topography, since The Batumi Aquarium is on the
coastline, as well as the thermal coefficient C

t

.

S = 0, 8 · 0, 8 · 1 · 0, 9kN/m

2
= 0, 58kN/m

2 (11.2)

Figure 11.2 shows the zone where the snow load is acting on the geometry of Pebble B.

(a) Plan of snow load distribution.
(b) Section of snow load distribution.

Figure 11.2: Distribution of snow loads.
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11.4 Wind Load

The wind load is applied in accordance with the [15] section 7.2.8 regarding vaulted roofs
and domes. The geometry of pebble B is treated as an axisymmetrical dome roof supported
by vertical walls. This is a very rough assumption but the best possible analytical solution
to the wind load acting on the geometry presented in the Eurocodes. Conservatively the
wind is assumed to act from all directions neglecting the area of pebble B covered by the
atrium in the center of all pebbles.

Figure 11.3: Illustration of snow load on cylindrical roofs. [15]

The external wind pressure acting on the different zones of pebble B are found from the
expression:

w

e

= q

p

(z) · c
e

(11.3)

The peak wind velocity is found to be 1,5 kPa. Figure 11.4 shows an overview of the varying
external pressure coefficients for the wind load acting on the different zones on the structure.
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(a) Vertical section of distribution of wind loads.

(b) Plan of wind load distribution - upper
part of Pebble B.

(c) Plan of wind load distribution - lower
part of Pebble B.

Figure 11.4: Distribution of wind loads.

Table 11.1 presents the values of the wind pressure coefficients:

Table 11.1: Wind pressure coefficients - directions are seen from figure 11.4

Zone 1 2 3 4 5 6
Coefficient [C

pe

] 1,2 0,85 1,35 0,7 0,75 1,5

11.5 Thermal Expansion

Finally temperature changes will cause the concrete to contract and expand resulting in
additional normal stresses in the cross sections. The strains experienced are calculated from
the following expression.

" = 10

�5 ·�T (11.4)

Where �T is the difference in temperature to which the structure is exposed. The temper-
ature difference is conservatively set to 40 degrees.

11.6 Subdividing the Shell Surface

To apply the above mentioned loads the shell geometry of pebble B needs to be subdivided
into relevant zones. In an attempt not to make the division of zones too comprehensive a
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generalized approach with nine zones as shown on figure 11.5 has been carried out. The
nine zones comply with the application of snow and wind loads as described above to an
acceptable degree.

(a) Top View (b) Perspective

(c) Front View (d) Right View

Figure 11.5: Subdivision of shell surface.

11.7 Load Combinations

Since no imposed loads are applied in this analysis the three main load combinations are
dominating snow load, dominating wind load and dominating self weight. Since the wind
load acts as both pressure and suction along the geometry the load combinations with
dominating snow load and dominating self weight should also be investigated in the case
where the wind load is left out.

Table 11.2: Load Combinations

Permanent Loads Snow Load Wind Load
[G

k,sup

] [G
k,inf

] [S
k

] [V
k

]

Snow Load Dominating 1,0K
FI

0,9 1,5 ·K
FI

1,5·0, 3 ·K
FI

Wind Load Dominating 1,0K
FI

0,9 0 1,5 ·K
FI

Self Weight Dominating 1,2 1,0 - -

Of course numerous load combinations could be thought of including asymmetrical loads
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and imposed loads as mentioned earlier.

11.8 Simplified Dimensioning Load Combination

As mentioned before the wind load will in all cases result in an upwards suction on the upper
part of the shell. This upwards surface load will always act favourably in combination with
the self weight, but never change the direction of the resulting distributed loads when the
self weight and the wind load is combined. Therefore the wind load on the upper part of the
structure is left out of this simplified load combination which will work as a guideline for
dimensioning the structure. This approach is a very rough generalization but will be used as
a reference example for the analysis and graphical tools developed and described later in the
report. This approach is considered acceptable since a more detailed approach to the wind
load would require testing the structure in a wind tunnel (or another practical approach)
which is not within the scope of this report.
By the use of the favourable/unfavourable argumentation the simplified dimensioning load
combination which will be used throughout the remaining part of this report will be the
combination of dominating snow load with the downwards suction from the wind load all
along the lower part of the structure as illustrated on figure 11.6. Realistically the wind
load would never work in all directions at the same time but again in combination with the
snow load the pressure on the side of the structure where the wind acts would act favourably
against the self weight and the snow load.

Figure 11.6: Section illustrating the simplified wind distribution and snow load which work as the reference load
combination for the remaining part of the report.
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Structural Analysis

This chapter presents an analysis of the original geometry and the optimised geometry
of pebble B. The structural analysis will be conducted in regards to the loads and load
combinations presented in chapter 11. Section 12.1.2 of this chapter contains a linear analysis
performed in Sofistik and The Cross Section Design Tool. The section force distributions,
theoretical cross section areas and corresponding cross section attributes will be presented.
In section 12.1.4 a non-linear analysis is carried out according to the approach described in
section 10.3, the deflection plot and results for the SLS requirements will be presented. The
optimised geometry will be dimensioned by the same procedure in section 12.2.2 and section
12.2.4 respectively. Finally in section 12.3 results of the structural analysis will be compared
according to the design criteria of material consumption.
The shear capacities of the shell structures are not exceeded. The shear capacity check can
be found in appendix B.1.

12.1 Dimensioning the Original Geometry

The undeformed and deformed meshed geometry from Sofistik can be seen in figure 12.1.
The deformation shape is scaled and can only be used as an intuitive representation of the
behavior of the structure.

(a) Undeformed mesh. (b) Deformed mesh.

Figure 12.1: The original geometry meshed. Deformation scale factor: 100.

As expected the largest deflection occurs in concave areas and in areas of large curvature
discontinuity on the geometry. The meshed geometry shown in figure 12.1 contains 8920
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quad elements.

12.1.1 Applied Loads

The shell structure is exposed to self weight, snow load and wind load. The areas where snow
loads and wind loads are applied are illustrated on figure 12.2 along with the respective load
values. The behaviour of the snow and wind load is described in further detail in chapter
11.

Load Intensity Area
Snow Load 0,58 kN/m2 723 m2

Wind Load 1,5 kN/m2 900 m2

Self Weight 3,75 kN/m2 3056 m2

Figure 12.2: Load zones and values.

The size of the self weight stated in the table above is based on an estimated uniform cross
section height of 0,15 m and a density of the reinforced concrete of 25 kN/m3

.

12.1.2 Linear Analysis Results

The following section will present the section forces in the structure when exposed to the
above stated loads and conclude whether or not the distributions are in accordance with
what could be expected from a geometric analysis as conducted in section 9.3. The section
forces are obtained from a linear analysis in Sofistik.
The section force distributions and especially the understanding of these is important when
implemented in the The Cross Section Design Tool to apply appropriate cross sections to
the structure in ULS.
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12.1.2.1 Bending Moment - X

The bending moment distribution in the local x-direction can be seen from figure 12.3.
Values are averaged within the respective quad elements.

Figure 12.3: Distribution of bending moments. X-direction.

The largest bending moments in the local x-direction occur in the same areas as for the
deflection of the structure due to the low flexural stiffness of a thin shell. It should be noted
from figure 12.3 that the largest bending moments are located in relatively small areas -
the concave areas. However, by comparing figure 9.6 and figure 12.3 it is seen that positive
bending moments occur in three areas as predicted in section 9.3. Previous investigations
showed that such areas affect the overall efficiency of the shell structure negatively. The
negative moment at the edge and the positive moment in the center of the planar area is also
in accordance with what could be expected from a traditional plate/beam theory approach.
Large bending moments are found around the lower boundaries due to the inclination of the
lower part of the structure.
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12.1.2.2 Bending Moment - Y

The bending moment distribution in the local y-direction can be seen from figure 12.4.
Values are averaged within the respective quads elements.

Figure 12.4: Distribution of bending moments. Y-direction.

As seen in figure 12.4 the bending moments in the local y-direction follow the same pattern
as observed for the x-direction. Maximum values occur in the concave areas and around the
base. It is interesting to compare the distribution of M

x

and M

y

to see that the negative
values of both directions cover complementary areas at the edge of the large concave area
which means that the second principal moment should cover the entire edge of the concave
areas, which is actually the case as seen in appendix A.1.5. The planar areas in the middle
of the concave areas are again subjected to positive bending moments - verifying the plate
characteristics.
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12.1.2.3 Membrane Forces - X

The membrane force distribution in the local x-direction can be seen from figure 12.5. Values
are averaged within the respective quad elements.

Figure 12.5: Distribution of membrane forces. X-direction.

The compression force in the circumferential direction at the supports might seem extremely
large in comparison with the values of the remaining section forces but is actually in accor-
dance with the membrane theory presented in section 3.2.
The proportion between the very large compression force and the remaining membrane forces
in the local x-direction presented in figure 12.5 distorts the distribution plot but if studied
closely it is seen that the structure experiences negative membrane forces in the upper part
of the structure and a positive membrane force in the lower part which is also in accordance
with the hemisphere theory. The horisontal component caused by a change in direction of
the in-plane membrane forces at the belt generates large tension forces in the lower part of
the geometry as seen in the figure 12.5.
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12.1.2.4 Membrane Forces - Y

The membrane force distribution in the local y-direction can be seen from figure 12.6. Values
are averaged within the respective quad elements’.

Figure 12.6: Distribution of membrane forces. Y-direction.

The membrane force distribution in the local y-direction should theoretically1 be negative
and decrease going from the supports to the vertex. However, it is also observed that the
membrane forces are highly related to the curvature discontinuity especially going from con-
vex to concave. By comparing figure 9.6 and 12.6 it can be stated that when the operational
sign of the Gaussian curvature changes, the membrane forces in the y-direction is affected.

1Axisymmetrically loaded hemisphere.
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12.1.2.5 Extreme Section Forces

Table 12.1 sums up the extreme values of the bending moments for the original geometry as
seen from the previous section force distributions.

Table 12.1: Extreme values of the bending moments - original geometry.

M
x,max

M
x,min

M
y,max

M
y,min

14,3 kNm -13,8 kNm 15,2 kNm -87,2 kNm

Furthermore the extreme values of the membrane forces are listed in table 12.2

Table 12.2: Extreme values of the membrane forces - original geometry.

N
x,max

N
x,min

N
y,max

N
y,min

997 kN -4586 kN 105,6 kN -432,9 kN

By comparing the previous figures the extreme values are located around the concave areas
and in an area at the base. These areas will be dimensioning in the following reinforcement
design. Large tension forces are unfavourable for the concrete - and a strongly reinforced
ring beam in the circumferential direction is necessary around the belt.

12.1.2.6 Cross Section Determinition

By use of The Cross Section Design Tool introduced in section 7.6 the geometry has been
divided into five zones. Figure 12.7 shows this subdivision.

Figure 12.7: Original geometry divided into zones of determined cross sections.

Table 12.3 presents the cross section parameters for the five given areas shown in 12.7.



84 Structural Analysis

Table 12.3: Cross section parameters.

Concrete Layer
Thickness 125 mm
Top Layer Reinforcement

X-direction 4 x Ø10
Y-direction 4 x Ø10
Bottom Layer Reinforcement
X-direction 4 x Ø10
Y-direction 4 x Ø10

Concrete Layer
Thickness 135 mm
Top Layer Reinforcement

X-direction 9 x Ø12
Y-direction 9 x Ø12
Bottom Layer Reinforcement
X-direction 4 x Ø12
Y-direction 4 x Ø12

Concrete Layer
Thickness 135 mm
Top Layer Reinforcement

X-direction 4 x Ø12
Y-direction 4 x Ø12
Bottom Layer Reinforcement
X-direction 9 x Ø12
Y-direction 9 x Ø12

Concrete Layer
Thickness 175 mm
Top Layer Reinforcement

X-direction 11 x Ø14
Y-direction 7 x Ø14
Bottom Layer Reinforcement
X-direction 11 x Ø14
Y-direction 7 x Ø14

Concrete Layer
Thickness 200 mm
Top Layer Reinforcement

X-direction 7 x Ø16
Y-direction 10 x Ø16
Bottom Layer Reinforcement
X-direction 7 x Ø16
Y-direction 4 x Ø16

From table 12.3 the cross sections for the red and green areas have been designed to obtain
a negative and positive bending moment respectively. The blue area acts as the before
mentioned tension ring around the belt of the structure. The yellow area has been designed
especially in order to cope with the extremely stressed area at the base as mentioned earlier.
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12.1.3 Linear/Non-Linear Deflection Ratio

Non-linear analyses are time consuming and a simple approach to estimate appropriate cross
sections to satisfy the deflection limit of 30 mm is investigated in this section. By determining
the ratio between the deflection found through a linear analysis and a non-linear analysis a
generalisation can be made. Table 12.4 lists the linear and non-linear deflections found for
the cross sections presented in the previous section exposed to characteristic dead load only.

Table 12.4: Deflection ratio.

Linear Deflection Non-Linear deflection r
u

31,6 mm 182,7 mm 5,78 height

Now that the ratio is determined the target deflection of the linear calculation can be de-
termined as:

u

limit

r

u

=

30mm

5, 78

= 5, 19mm (12.1)

So to sum up: The cross sections are strengthened in the linear deflection calculations until
the deflection found is below 5,19 mm. The strengthened structure is then used for the
following non-linear calculation where the deflection found will be in the area of 30 mm
though the cross section areas are simplified in an attempt to make the areas more realistic
from a buildability point of view.

12.1.4 Non-Linear Analysis Results

The original geometry has been subdivided according to figure 12.6 - a modest change has
been made around the belt where the ring beam has been straightened out. This is done
from a modelling and buildability point of view. The subdivision can be seen in figure 12.8.

Figure 12.8: Subdivision of the original geometry.

The base and the ring beam have been modelled with a thickness of 1,5 meter, the concave
areas have a thickness of 0,45 meter and the top area has a thickness of 0,4 meter. All
areas have a reinforcement mesh respectively as the cross sections in table 12.3. However, a
larger amount of reinforcement has been used. In the following figure the deflection of the
structure can be seen. FE values of crack widths, stresses and strains for both concrete and
reinforcement steel can be seen in appendix E.1.
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Figure 12.9: The non-linear deflection of the original geometry.

From figure 12.9 it is seen that the largest deflection occur at the boundary of the subdivision
of the upper part. Whereas the thickness of the concave area is 0,45 m the convex area is
only 0,4 m, therefore when the concrete cracks in this area the upper part has a smaller
moment of inertia. Besides the cracking the concave areas are stronger reinforced than the
upper part. In the following table the results from the non-linear analysis of the original
geometry has been summarised.

Table 12.5: Non-linear analysis results for the original geometry.

Non-Linear Results Value
Max Deflection 31,8 mm

Max Top Crack Width 0,405 mm
Max Bottom Crack Width 0,352 mm

Max Concrete Compressive Stress 6,78 MPa
Max Reinforcement Stress 276,6 MPa

Concrete Volume 2132,5 m3

Reinforcement Volume 32,5 m3

Information on the cross section for the different areas can be found in appendix E.1. As
seen from table 12.5 the maximum deflection and maximum crack width is not fully satisfied.
However, the deviation is at an acceptable level. Furthermore, it is seen that the coefficient
of utilisation is quiet poor for the reinforcement. A maximum stress of 276.6 MPa indicates
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that the reinforcement design to a large degree is determined by the maximum crack width.
In the following section the optimised geometry has been analysed by the same procedure.
In section 12.3 results for the two geometries will be compared.

12.2 Dimensioning the Optimised Geometry

Figure 12.10 shows the meshed optimised geometry undeformed and deformed when exposed
to dead load. The meshed optimised geometry consists of 9232 elements.

(a) Undeformed mesh. (b) Deformed mesh.

Figure 12.10: The optimised geometry meshed. Deformation scale factor: 100.

As seen in figure 12.10 the large deformation does not occur in the upper part of the structure
after this part has been parametrically modelled as described in section 8.2. The overall
deflection is now a result of the inclination of the lower part of the structure which has not
been the subject of any geometric optimisation in this report.

12.2.1 Applied Loads

The shell structure is exposed to loads similar to the ones applied to the original geometry.
Load parameters can be seen in table 12.6.

Table 12.6: Applied loads - optimised geometry.

Load Intensity Area
Snow Load 0,58 kN/m2 742 m2

Wind Load 1,5 kN/m2 900 m2

Self Weight 3,75 kN/m2 3095 m2

Again the self weight stated in the table above is based on an estimated uniform cross section
height of 0,15 m and a density of the reinforced concrete of 25 kN/m

3.

12.2.2 Linear Analysis Results

The resulting section force distributions are presented before appropriate cross sections are
applied in ULS as it was the case for the original geometry in section 12.1.2.
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The section force distributions in the local directions are presented in figure 12.11 to 12.14.
Values are averaged values within the respective ”quads”.

Figure 12.11: Distribution of bending moments. X-direction.

Figure 12.12: Distribution of bending moments. Y-direction.

Figure 12.13: Distribution of membrane forces. X-direction.

Figure 12.14: Distribution of membrane forces. Y-direction.

From figure 12.11 to 12.14 the initial conclusion would be that the distributions of the
section forces in the local directions are more homogenous for the upper part of the optimised
structure than for the original structure. However, the extreme values at the supports makes
it hard to conclude how the section forces act in the upper part. Only the membrane force in
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the y-direction experiences a degree of inhomogeneity in the upper part and as the upper part
is the most interesting area since it was the subject of the geometry optimization process
a more detailed evaluation of the section force distributions will be conducted in section
12.2.2.1. Besides a clearly more uniform upper part the base is exposed to section force
distributions identical to the original geometry. Especially the previous mentioned weak
area at the base occurs in all figures2. This area will be dimensioning in the reinforcement
design for the whole lower part of the structure.

12.2.2.1 Section Forces Upper Part

As the previous investigation showed an extra study of the upper part of pebble B isolated
from the lower part is needed in order to clearly see the section force distributions. The
overall uniformity in the distributions at the upper part mentioned earlier is in contrast to
the geometrical analysis of the optimised geometry in section 9.4. Here four planar areas
(Fig. 9.7 ) were discovered which should be reflected in the section force distributions for
the upper part. In the following four figures the section force distributions of the upper part
is seen.

(a) Bending moment. X-direction (b) Bending moment. Y-direction

(c) Membrane forces. X-direction (d) Membrane forces. Y-direction

Figure 12.15: Cross section distributions for upper part

2The dark blue area in figure 12.11 and 12.12 indicate large negative moments. In figure 12.13 as a dark
red area (tension force) and in figure 12.14 as a dark blue area (compression).
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The four weak areas on the upper part are now clearly identified in figure 12.15. As predicted
these areas will act with plate characteristics. The bending moment in both directions are
positive and fairly larger compared to adjacent moments in all four areas. Furthermore, are
the surrounding areas exposed to a negative moment just as in the case of planar/concave
areas on the original geometry. For the membrane forces however, the tendency is the
same around the planar areas as the forces are increased - this indicate an in-plane mode
resistance. This is due to the fact that the areas are not completely flat.

12.2.2.2 Extreme Section Forces

Table 12.7 sums up the extreme values of the bending moments for the optimised geometry
as seen from the section force distributions in figure 12.11 to 12.14.

Table 12.7: Extreme values of the bending moments - optimised geometry.

M
x,max

M
x,min

M
y,max

M
y,min

11,8 kNm -15,3 kNm 10,2 kNm -102,5 kNm

Furthermore the extreme values of the membrane forces are listed in table 12.8

Table 12.8: Extreme values of the membrane forces - optimised geometry.

N
x,max

N
x,min

N
y,max

N
y,min

1054 kN -4423 kN 54,1 kN -421,6 kN

The extreme values are not located in the upper part of pebble B as opposed to the original
geometry. In terms of membrane moments in the upper part of the structure the optimisa-
tion has been successful but the extreme values have not been reduced significantly when
considering the overall structure.

12.2.2.3 Cross Section Determinition

By use of The Cross Section Design Tool introduced in section 7.6 the following division into
three different cross sections have been made. Figure 12.16 illustrates the subdivision of the
optimised geometry into areas of the determined cross sections.

Figure 12.16: Optimised geometry divided into zones of determined cross sections.

Table 12.9 lists the cross section parameters.



12.2 Dimensioning the Optimised Geometry 91

Table 12.9: Cross section parameters.

Concrete Layer
Thickness 125 mm
Top Layer Reinforcement

X-direction 4 x Ø10
Y-direction 4 x Ø10
Bottom Layer Reinforcement
X-direction 4 x Ø10
Y-direction 4 x Ø10

Concrete Layer
Thickness 140 mm
Top Layer Reinforcement

X-direction 8 x Ø12
Y-direction 4 x Ø12
Bottom Layer Reinforcement
X-direction 8 x Ø12
Y-direction 4 x Ø12

Concrete Layer
Thickness 200 mm
Top Layer Reinforcement

X-direction 9 x Ø14
Y-direction 10 x Ø14
Bottom Layer Reinforcement
X-direction 8 x Ø14
Y-direction 4 x Ø14

Compared to the subdivision of the original geometry the upper part now consists of one
cross section. The red area acts as the tension ring with increased reinforcement in the x-
direction. In the green area both the thickness and the amount of reinforcement is increased
due to the weak area at the base.

12.2.3 Linear/Non-Linear Deflection Ratio

As it was the case for the dimensioning of the original geometry the ratio between the
linear deflection and the non-linear deflection is determined to ease the following non-linear
dimensioning process.
Table 12.10 lists the linear deflection, the non-linear deflection and the ratio between them.
The deflections are found for the cross sections presented in section 12.2.2.3 exposed to
characteristic dead load only.

Table 12.10: Linear deflection, non-linear deflection and deflection ratio.

Linear Deflection Non-Linear deflection r
u

14,5 mm 68,0 mm 4,69 height

Now that the ratio is determined the target deflection of the linear calculation can be de-
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termined as:

u

limit

ratio

u

=

30mm

4, 69

= 6, 40mm (12.2)

The target deflection is therefore set to 6,40 mm for the linear deflection carried out before
the non-linear dimensioning process is carried out.

12.2.4 Non-Linear Analysis Results

As for the original geometry the optimised geometry has been subdivided into different areas,
enabling a ring beam at the ’belt’. However, as the structure contains no concave areas at
the upper part there is no further need for subdividing the geometry. In figure 12.17 the
subdivision can be seen.

Figure 12.17: Subdivision of the original geometry.

The thickness of the cross sections are 1 meter for the base and the ring beam and 0,3
meter for the upper part. As for the original geometry the design requirements for the
reinforcement are determined according to section 10.2. The deflection for the non-linear
analysis can be seen in figure 12.18. Crack width, stresses and strains for both concrete and
reinforcement steel can be seen in appendix E.2.
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Figure 12.18: The non-linear deflection of the original geometry.

The largest deflection is located in the area with the largest positive bending moments in the
upper part (figure 12.15). This is due to the cracked conditions in the lower part of the cross
section forced by the bending moment. The deflection could be improved be increasing the
thickness of the cross section but this improvement would also increase the bending moments
an therefore, a gain would be minimal.

In the following table the results from the non-linear analysis of the optimised geometry
have been summarised.

Table 12.11: Non-linear analysis results for the optimised geometry

Non-Linear Results Value
Max Deflection 30 mm

Max Top Crack Width 0,422 mm
Max Bottom Crack Width 0,311 mm

Max Concrete Compressive Stress 8,19 MPa
Max Reinforcement Stress 324,2 MPa

Concrete Volume 1378,9 m3

Reinforcement Volume 18 m3

As for the original geometry the maximum crack width are not fulfilled. The utilisation of
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materials are higher - indicating a more homogeneous structure. The material consumption
is almost halved compared to the original geometry.

12.3 Results and Discussion of Structural Analysis

Two potential feasible designs of pebble B were investigated in the previous sections: The
original geometry designed by Henning Larsen Architects and the optimised geometry de-
signed by a the parametric model developed in this project. Both designs satisfy the overall
design constraints regarding: Inclined base, highly curved, no inner columns and smooth
interior surfaces. The results from the non-linear analysis can be seen in table 12.5 and
12.11 and it is clear that the optimised geometry satisfies the design criteria formulated in
section 8.1: A reduction of the material consumption. Table 12.12 shows the concrete and
reinforcement steel consumed for the optimised geometry compared to the original geometry.

Table 12.12: Comparison of material cunsumption. Non-Linear results.

Concrete Reinforcement steel
Original Optimised Original Optimised

Volume 2132,5 m3 1378,9 m3 32,5 m3
m

3 18 m3

Reduction 35,4 % 44,6 %

A reduction in the concrete volume of more than 30% and the reinforcement steel volume
of more than 40% are both significant amounts. These two observations indicate that the
optimised structure is a more efficient shell structure only due to a reduction of the bending
moments in the upper part which is indicated in figure 12.11 to 12.12. Generally the two
geometries act as predicted in section 9.3 and 9.4 where areas with large curvature disconti-
nuity or large principal radii are more exposed which verifies the potential gain of performing
an geometric analysis before the final structural analysis.
In order to reduce the material consumption further different approaches can be used. An
optimisation of the base and especially the weak area mentioned previously is one options
and the most obvious in the perspective of this report. Additionally the concept of a bubble
deck 3 can be applied for the upper part in order to reduce the weight and still maintain the
moment of inertia. Furthermore, are plastic fibres mixed in the concrete a possible solution
in order to reduce the crack width.
Besides the reduction in the material consumption the optimised geometry proved to be
simpler to subdivide into different cross section areas. Having a more simple reinforcement
mesh and as few cross section thicknesses as possible will ease the construction phase and
possibly save time.

3By applying the bubble deck an reduction in the self weight around 40% is possible[22]
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Chapter 13

Structural Support to Pebble A

The upper pebble of The Batumi Aquarium, pebble A, is supported by the lower pebbles.
This chapter investigates how the structural support to pebble A could be designed.
Section 13.1 aims to apply cross sections of sufficient stiffness to secondary frame structures
to ensure a maximum deflection of 30 mm. Section 13.2 studies ring loads on shell structures
and presents two different approaches to supporting pebble A through a ring load on pebble
B1.
According to Buro Happold a self weight of 7500 kN and an imposed load of 1500 kN from
pebble A is to be supported by pebble B. Given a load combination of dominating imposed
load the resulting load which will be the dimensioning load for this chapter becomes:

P

d

= 7500kN + 1, 5 · 1500kN = 9750kN (13.1)

Figure 13.1 shows how pebble B supports pebble A.

Figure 13.1: Pebble B supporting pebble A.

1All investigations in part 3 are based on the original geometry of pebble B.
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13.1 Secondary Structures

This section will briefly state examples of the necessary dimensions of welded beam sections
and trusses in regards to obtaining the load from pebble A. The investigation is kept to a
conceptual level and can only be justified in a magnitude based context.
Since the positioning of columns within the free space of pebble B was ruled out in the
restrictions of the project in section 6.2 the only possible solution is to place the secondary
structure in the perimeter of the shell geometry. For this purpose a parametric script have
been developed in GH to place frame structures within the surface geometry of pebble B.
The script offers the possibility to change the number of frames, apply any given standard
steel profile and export the structure to Robot. The script can be seen in appendix F.2.

13.1.1 Structure Proposals

Numerous proposals to the geometry of the secondary structure could be developed and
looked into. Two proposals can be seen from figure 13.2 with respectively 9 and 19 frames.
Both might seem rather dense but as it can be seen from the calculations later on a very
stiff structure is necessary to get an acceptable deflection.

(a) Structure A. (b) Structure B.

Figure 13.2: The two proposed secondary structures.

It can be predicted that structure A has a larger stiffness overall compared to structure B but
the scale of structure A and hence the material applied might not be utilized as efficiently
as for structure B.
As seen from figure 13.2 the spacing between frames changes in one end where three frames
are left out. This is due to location of the entrance to the pebble B where the frames would
interfere with the path of visitors in the aquarium.

13.1.2 Cross Section Proposals

Different cross sections are investigated to see how a reasonable deflection of the secondary
structure canbe secured. In an attempt to make the scale of the calculated deflections more
relatable the structure is investigated by the use of standard cross sections. It is clear that
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the moments of inertia simply are not large enough to satisfy a deflection restriction of 30mm.
Figure 13.3 shows the two structures exported to Robot with IPE600 profiles applied to the
frames.

(a) Structure A - Robot. (b) Structure B - Robot.

Figure 13.3: The two proposed secondary structures.

Table 13.1 and 13.2 confirm that the investigated cross sections do not satisfy the target
deflection.

Table 13.1: Deflections - Structure A.

Profile Moment of Inertia Deflection Steel Volume
IPE600 920,8 ·106mm

4 746mm 9,6 m2

HEM1000 7223 ·106mm

4 103mm 27,2 m2

Table 13.2: Deflections - Structure B.

Profile Moment of Inertia Deflection Steel Volume
IPE600 920,8 ·106mm

4 1426mm 3,5 m2

HEM1000 7223 ·106mm

4 187mm 9,9 m2

Therefore the necessary moment of inertia for a given cross section is calculated to see what
dimensions such a cross section could have:

I

y,structureA

=

u

reference

u

target

· I
reference

(13.2)

I

y,structureA

=

103mm

30mm

· 7223 · 106mm

4
= 24799 · 106mm

4 (13.3)

I

y,structureB

=

187mm

30mm

· 7223 · 106mm

4
= 45024 · 106mm

4 (13.4)

The target moment of inertias correspond to cross sections - when kept in height/width scale
of a HEM profile - seen from figure 13.4.
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(a) Structure A. (b) Structure B .

Figure 13.4: Proposals for cross sections with necessary moments of inertia. Measures in mm.

Table 13.3 shows the moments of inertia of the proposed cross sections from figure 13.4 along
with the total steel volume for the frame structures.

Table 13.3: Resulting moments of inertia and total steel volumes.

Structure Moment of Inertia Deflection Steel Volume
A 3,0 ·1010mm

4 30 mm 54,9 m3

B 5,0 ·1010mm

4 30 mm 28,6 m3

It is concluded that a welded I-profile frame structure is not an applicable solution in this
case. The large vertical load combined with the inclination of the lower part of the frames
makes the necessary stiffness of the cross section extremely large. Columns - steel or concrete
- will always be preferable when a load of this size is to be transferred to the foundation.
In this project however it was specifically stated in the restrictions that columns should not
interfere with the interior space of pebble B. The suggested solution is then to transfer the
loads through membrane forces in the shell structure which will be investigated in section
13.2.
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13.2 Ring Load Support

Section 13.1 concluded that a secondary structure not consisting of vertical columns was not
a suitable approach. This section seeks to clarify how the shell reacts if exposed to the given
self weight from pebble A.
Since point loads on a shell structure are unfavourable, as observed in part I in this report,
this section will investigate different approaches to transferring the load from pebble A to
pebble B as a ring load. Another solution could be a line load through a hidden beam in
the reinforced concrete cross section of the shell but the ring load approach is preferred here
since the natural intersection geometry between two pebbles or spheres will have a circular
geometry. The circular intersection between pebble A and pebble B is illustrated in figure
13.5.

Figure 13.5: Circular intersection between pebble A and pebble B.

Before applying the ring load to the pebble B geometry a ring load study is carried out as
a prerequisite to the optimisation of the structure later in this chapter.

13.2.1 Ring Load Study

This investigation of ring loads is based on a qualitative approach where various load and
geometry setups will be investigated and evaluated. The qualitative approach is preferred as
opposed to an analytical approach because of the parametric modelling process upon which
this report is based. The parametric approach enhances the generation and alteration of
models which is of great value for a qualitative investigation.
Eight load and geometry setups are investigated in continuation of the various investigations
carried out in part I. All geometries are applied with similar cross sections and the boundary
conditions presented in section 10. The structural analysis of pebble B applied the weakest
cross section to the upper part of the structure. To reduce the maximum deflection in the
upper part of the shell the target of this study is to reduce the bending moments especially
locally around the ring load. The eight analysis setups illustrated in figure 13.6 is the
combination of two geometries exposed to four different loads. The first geometry - setup 1,
3, 5 and 7 - is a truncated hemisphere with a radius of 7,5 m which is chosen in continuation
of the investigations done for the hemisphere in chapter 4. The second geometry - setup 2, 4,
6 and 8 - is an axisymmetrical truncated shell structure with a circular plan (radius = 7,5 m)
and a height of 9 m. The two different geometries are investigated in an attempt to clarify
the importance of the angle between the applied load and shell but also to investigate how
the section forces are influenced when the load is applied through a ring beam as opposed
to a circular line load.
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(a) Setup 1. (b) Setup 2.

(c) Setup 3. (d) Setup 4.

(e) Setup 5. (f) Setup 6.

(g) Setup 7. (h) Setup 8.

Figure 13.6: The analysis setups.
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The two geometries are exposed to four different loads all with a magnitude of 6283 kN
corresponding to a ring load of 500kN/m with a radius of 2 m. The parameters of the
geometries and load setups are listed below. Alterations are highlighted in bold text.

• Line load. [Setup 1 and 2].
• A circular surface load. Radius: 2 m. Ring beam width: 1m.

Cross section height: 0,2 m. [Setup 3 and 4].
• A circular surface load. Radius: 2 m. Ring beam width: 1m.

Cross section height: 2 m. [Setup 5 and 6].
• A circular surface load. Radius: 3 m. Ring beam width: 1m.

Cross section height: 2 m. [Setup 7 and 8].

The reason why the cross section of the ring beam in setup 5 to 8 is made stiffer by increasing
the height is that a reduced bending of the ring itself will result in a smaller bending moment
transferred to the shell structure from the ring. However, the bending moments are only
reduced to a certain degree hence an infinitely stiff ring beam will still transfer bending
moments to the shell.

13.2.1.1 Section Force Distributions

The extreme values of the section forces for all eight setups can be seen from table 13.4. The
local coordinate systems are similar to the ones presented in section 10.1.1.

Table 13.4: Extreme section forces.

M
x

[kNm/m] M
y

[kNm/m] N
x

[kN/m] N
y

[kN/m]

Setup Max Min Max Min Max Min Max Min
1 75 -5 3 -111 802 -5681 -133 -965
2 48 -4 2 -91 571 -4946 -133 -821
3 48 -5 3 -118 882 -2807 -133 -1205
4 25 -4 2 -107 653 -2233 -133 -1011
5 23 -1 72 -22 492 -780 -133 -994
6 14 -1 42 -14 331 -599 -133 -858
7 11 -1 29 -15 352 -557 -133 -557
8 8 -1 18 -11 258 -491 -133 -507

The extreme values of the bending moments have been plotted in figure 13.7. The diagram
illustrates the span between maximum and minimum values of the bending moments. To
verify the eight analyses carried out it is seen that the maximum section force in the local
y-direction - the vertical reaction at the supporting boundary - approximately corresponds
to the total vertical load of 6283 kN.2

2133kN/m ·15m · ⇡ = 6267, 5kN.
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Figure 13.7: Comparison of M

x

and M

y

values for the eight different geometries.

It can be concluded that the bending moments in the local x-direction is significantly reduced
when the angle between the load direction and the shell structure is reduced. The stiffness
of the ring beam also seems to have the desired effect. The bending moment in the local
y-direction however acts differently for the geometries where the ring beam is introduced
(setup 5 to 8). To clarify how the bending moment distribution changes when the ring beam
is implemented the M

y

distribution for setup 1 and setup 5 is presented in figure 13.8.

(a) Setup 1. (b) Setup 5.

Figure 13.8: Comparison of M
y

.

Figure 13.8 shows that relatively large negative bending moments are found in the area
around the circular line load for setup 1 as opposed to the positive moment found at the
edge of the ring beam in setup 5. It seems that for the line load in setup 1 the behaviour of
the shell structure is comparable to a cantilevered beam while the stiffness of the ring beam
introduced in setup 5 changes the operational sign of the bending moments at the edge of
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the shell structure.

Figure 13.9 shows the span of the membrane forces in local directions for the eight setups.

Figure 13.9: Comparison of N

x

and N

y

values for the eight different geometries.

It is seen that the membrane force in the local y-direction is reduced especially when the
radius of the ring beam is increased (setup 7 and 8) but the remaining alterations does not
seem to have much influence. Figure 13.10 show the nature of the membrane forces in the
local y-direction for load setup 1 and 5.

(a) Setup 1. (b) Setup 5.

Figure 13.10: Comparison of M
y

.

It is seen that the membrane force distributions in the local y-direction for setup 1 and 5
are almost identical at that the vertical reaction at the base corresponds to before verified
vertical reaction force.
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The membrane force in the local x-direction, the circumferential direction, is heavily reduced
through all alterations especially when the ring beam is introduced. This is probably due to
the circumferential stiffness of the ring beam that acts as a compression ring.
It is interesting to see that the widening of the ring beam introduced in setup 7 and 8 has
an insignificant effect on the extreme values of N

x

.

13.2.2 Ring Load on Pebble B

From the ring load study above it was concluded that a ring beam with sufficient stiffness
improves the distribution of section forces over the shell structure. This approach can be
implemented on pebble B without interfering with the original geometry. A ring beam with
a thickness of 1 m and a height of 2 m could be hidden within the large shells of pebble A
and pebble B. This approach will be investigated in section 13.2.2.1.
The second approach investigated is a combination of a stiff ring beam and a conical geometry
pointed towards the centre of the ring load which decreases the angle between the load
direction and the shell geometry. The radius of the ring beam for the conical geometry has
been increased by 1 m. This investigation is carried out in subsection 13.2.2.2. The two
approaches are illustrated in figure 13.11.

(a) Ring beam approach. (b) Conical geometry with ring beam approach.

Figure 13.11: The two ring load approaches.

The ring beam is tilted approximately 30

� from horisontal which increases the transverse
total loading on the ring beam to:

p

d

= 9750kN/cos(30) = 11250kN (13.5)
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13.2.2.1 Ring Beam Approach

The first approach applies the load to pebble B through a ring beam as seen in figure 13.12.
The ring beam has a width of 1 m and a height of 2 m. The analysis is carried out in Sofistik
with boundary conditions according to section 10.1.1.

Figure 13.12: Sofistik FEA model of the ring beam approach.

The extremes of the principal section forces for the structure can be found in table 13.5.
The section forces in the ring beam are not included in the table3.

Table 13.5: Extremes of principal section forces.

M
I

[kNm/m] M
II

[kNm/m] N
I

[kN/m] N
II

[kN/m]

Max Min Max Min Max Min Max Min
191 -31 46 -201 1857 -923 26 -7415

Figure 13.13 and 13.14 presents the principal moment distributions for the ring beam ap-
proach.

3Due to local coordinate inconsistencies between the two investigated models, principal section forces are
used as the matter of comparison. Principal section forces does not act in local coordinate systems.
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Figure 13.13: M

I

distribution from Sofistik.

Figure 13.14: M

II

distribution from Sofistik.

It is seen from the principal moment distributions that the largest negative moment is found
directly underneath the ring beam while the largest positive moment is found at the edge of
the ring beam.
It seems that the large negative bending moments are located at a relatively large distance4

from the ring beam and it can be predicted that a local optimisation of the structure around
the ring beam might not influence the size of the negative moment greatly.
The membrane forces are evaluated in terms of the principal stresses in the centre plane
of the cross section as these are directly related to the principal membrane forces. The
Principal Stress Trajectory Tool, section 7 is applied to the section force data from Sofistik

4Saint Venant’s principal
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and the principal stress trajectories are presented to assist the understanding of the principal
membrane forces in the structure. The sizes of the stresses are not strictly relevant in this
investigation since they are based on a uniform cross section with a thickness of 200 mm but
the trajectories clearly show how the principal stresses are distributed over the geometry.

(a) �I distribution from Sofistik. (b) �I stress trajectories.

(c) �II distribution from Sofistik. (d) �II stress trajectories.

Figure 13.15: Principal stresses compared to the corrosponding stress trajectories.

It can be seen that the largest tension stresses act horizontally on the approximately verti-
cal sides around the shell structure while the largest compression stresses, negative �

II

, are
found directly under the ring load. The vertical supporting forces act from the supporting
base line towards the ring beam.
The optimised pointed geometry towards the load direction, referred to as the conical geom-
etry, is now investigated under similar circumstances to facilitate a comparison of the two
investigated approaches.
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13.2.2.2 Optimised Geometry with Ring Beam Approach

Again a ring beam approach is implemented but now with an optimised conical geometry in
an attempt to reduce the bending moments in the area around the ring beam.

Figure 13.16: Sofistik model of the optimised conical geometry with ring beam approach.

The extremes of the principal section forces for the structure can be found in table 13.6.

Table 13.6: Extremes of principal section forces.

M
I

[kNm/m] M
II

[kNm/m] N
I

[kN/m] N
II

[kN/m]

Max Min Max Min Max Min Max Min
38 -31 15 -205 1868 -729 65 -7591

It is seen that the maximum values of the principal bending moments have been reduced
through the optimisation of the geometry but that the minimum principal bending moments
have not been reduced. To understand the behaviour of the principal bending moments the
distributions are shown in figure 13.17 and 13.18.
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Figure 13.17: M

I

distribution from Sofistik.

Figure 13.18: M

II

distribution from Sofistik.

From figure 13.17 and 13.18 it is seen that the bending moments around the ring beam is
reduced. The shell structure experiences a large bending moment at the support but as for
the ring beam approach the bending moment can not be reduced by optimising the area
around the ring beam. By comparing the bending moments to the ones observed in section
12.1.2 it is seen that the same weak area by the support results in large bending moments.

The principal stress distributions compared to the principal stress trajectories for the centre
plane of the cross section can be seen from figure 13.19 to obtain a basic understanding of
the behaviour of the membrane forces. Again the exact sizes of the principal stresses are
not strictly relevant in an isolated perspective, but are useful in the comparison between the
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two geometries presented in this chapter.

(a) �I distribution. (b) �I stress trajectories.

(c) �II distribution. (d) �II stress trajectories.

Figure 13.19: Principal stresses compared to the corrosponding stress trajectories.

The principal stresses are seen to act in the same directions as for the structure in the ring
beam approach but the values, except for the tension stress directly under the ring beam,
are reduced.

13.2.3 Summary

It can be seen from the previous investigation that the bending moments can be significantly
reduced if the geometry is optimised towards the given load. The maximum value of the
first principal bending moment is in this investigation reduced from 190,8 kNm/m to 37,7
kNm/m. The maximum second principal bending moment is reduced by about 67 %. The
minimum principal bending moments and the principal membrane forces however are not
reduced significantly and actually increased in the case of the second principal membrane
force.
The negative principal bending moment in the area underneath the ring load is not reduced
and the value of -204,9 kNm/m is too large to be efficiently obtained by a reinforced concrete
shell structure.

The optimisation of the geometry may result in the reduction of bending moments as wished
but will not ensure a global reduction of all bending moments. In this case the bending mo-
ment in the local y-direction, which was also the largest of the moments for the structure
before the geometry optimisation was implemented, is not reduced. As for part 2 it is ob-
served that the lower part of pebble B should also have been the subject of a geometric
optimisation in order to reduce the bending moments for the entire structure.
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Finally for illustrative purposes the principal stress trajectories have for the two geome-
tries are presented. The principal stress trajectories have been generated by use of the
Principal Stress Trajectory Tool introduced in section 7. The trajectories shown are for the
centre plane of the cross sections.

Figure 13.20: �

I

trajectories overview.

Figure 13.21: �

II

trajectories overview.

Figure 13.20 and figure 13.21 for the ring beam approach show that the first principal
stresses, the numerically largest stresses, act circumferentially on the shell structure while
the second principal stresses mainly act in the local y-direction. From this observation it can
be expected that the cross section underneath the load ring will need a significantly large
amount of reinforcement to cope with the large horisontal tension stresses found in this area.

Figure 13.22 and figure 13.23 gives an overview of the principal stress trajectories for the
optimised conical geometry - again for the centre plane of the structure.
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Figure 13.22: �

I

trajectories overview.

Figure 13.23: �

II

trajectories overview.

Again the largest compression stresses act in a circumferential direction but interestingly it
is seen that the principal stress trajectories change direction compared to the geometry from
the ring beam approach in the area around the introduced conical shape. The discontinuities
around the edge of the introduced optimisation are most likely responsible for the change of
behaviour for the principal stress trajectories.
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Conclusion

This chapter concludes whether or not the structural optimisation of pebble B has been
successful and sums up the observations done throughout the report. Recommendations for
future work and studies are given in section 14.1.

In chapter 3.2 the membrane theory of shells of revolution is presented. The theory is used
to verify the finite element software, which is the base of further studies in this report. It is
concluded that Robot and Sofistik has acceptable deviances compared to analytical results
and these are chosen for the remaining quantitative finite element analyses in the project.
The simple finite element plug-in Scan&Solve calculates non-conservative deflections and is
only used for intuitive investigations of the deformation behaviour of simple shell structures.

Through a qualitative study of simple paper models, and similar finite element models in
Scan&Solve, a basic understanding of double curved shell structures is achieved in chapter
4. It is concluded that facetted and smooth shell structures are comparable in terms of de-
formations. Furthermore, chapter 4 concludes that the deformation behaviour of the paper
models compared to the computational models are similar and that the base geometry of
axisymmetrical shell structures is of little importance in regards to deformations in com-
parison with the consequences of planar and concave areas in the upper part of the shell
structures.

Chapter 5 presents a quantitative study of nine different axisymmetrical shell structures
exposed to a vertical uniformly distributed load and a horizontal uniformly distributed load
respectively. The nine geometries are chosen to represent the possible alterations of the
pebble B geometry. Finally a detailed study of 22 variations of the upper curvature of a
hemisphere is carried out. The chapter concludes that planar and concave areas perpendic-
ular to the load direction are unfavourable regarding deformations but for different reasons:
The planar areas experience large deformations because of large bending moments in the
centre of the area while the concave areas experience the large deformation due to the curva-
ture discontinuity at the edge of the areas. As in chapter 4 it is concluded that consequences
of altering the base geometry of the shell structures are smaller than for the alteration of
the geometry of the upper part of the structures.
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Various parametric visualisation tools are presented in chapter 7. The tools are developed
to assist the intuitive understanding of the curvatures, section forces and stresses in shell
structures. Additionally, a tool that applies cross sections to a given shell geometry through
a linear-elastic reinforced concrete calculation is developed.
All tools except for the Geometry Analysis Tool are based on data from linear analyses in
Sofistik.

The original geometry of pebble B designed by Henning Larsen Architects is optimised ge-
ometrically in chapter 8 in accordance with the observations done in chapter 4 and 5. A
parametric model where the geometry of the upper part of pebble B is the subject of the
geometry alteration is developed. The chapter proposes an optimised geometry where the
upper part is convex, however kept within the aesthetic frame of the proposal from Henning
Larsen Architects.

Based on the observations done in chapter 9 a method is developed to discover planar areas
on pebble B. Combining this method with a Gaussian curvature analysis it is possible to
perform a geometrical analysis of the original and the optimised geometry. For the original
geometry two large planar areas are discovered on the upper part. Furthermore, large cur-
vature discontinuities are seen around the concave areas and on the belt of the geometry.
Such areas will affect the overall efficiency of the structure. For the optimised geometry four
planar areas are seen on the upper part. However, the discontinuity in curvature is clearly
reduced for the upper part and the observations indicate that a more efficient shell has been
generated.

A structural analysis of the original geometry and the optimised geometry is presented in
chapter 12. A linear analysis is the base of the dimensioning process where cross sections
are assigned in ultimate limit state. The maximum deflection of a thin shell structure with
large spans as pebble B is found to be the dimensioning factor. The dimensions of the cross
sections that ensure a maximum deflection below the target of 30 mm through a non-linear
analysis in serviceability limit state confirms this assumption. The material consumption of
the two different geometries of pebble B is the matter of comparison and it is seen that a
reduction of 35,4% and 44,6% in the concrete and reinforcement steel volumes respectively
is achieved by implementing the changes in the upper part of the geometry as presented in
chapter 8. It is also concluded that the division of the two shell structures, into areas of
different cross sections, is simpler for the optimised geometry, hence the buildability of the
design is assumed to have increased.

Chapter 13 investigates the necessary dimensions of two proposed designs of a secondary
frame structure to obtain the self-weight and imposed load from pebble A. The design re-
strictions ruled out the use of columns in section 6.2 and a structured kept in the perimeter
of the shell surface is preferred. The investigation concludes that the implementation of
frame structures to carry the upper pebble is not feasible given the sizes of the necessary
cross sections to ensure a deflection below 30 mm. The necessary moments of inertia for the
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proposed structures were calculated to be 25·109mm

4 and 45·109mm

4 respectively.

Finally chapter 13.2 applies the self-weight and imposed load from pebble A directly to the
shell structure of pebble B through a ring load. Before doing so a study of ring loads on shell
structures is carried out investigating eight different load setups. The load setups studied
show that the angle between the applied load and the loaded area on the shell surfaces is
of great importance in regards to the bending moments but also that by applying the load
through a stiffened ring beam reduces the bending moments locally.
However, the chapter concludes that more than a local optimisation of the application of
the load or the geometry is needed since the both structures investigated experience a very
large bending moment by the supporting line below the ring load.

14.1 Further Studies

This section sums up issues for further study. Although several conclusions are made they
do not indicate that research in these fields is final.

An obvious future task will be a structural optimisation of the base of pebble B by a para-
metric approach. Furthermore, a more comprehensive structural analysis of pebble B, taking
additional design requirements such as seismic considerations, exposure to fire and robust-
ness into account, is needed.

An extension of the qualitative study of shell structures with parameters such as: boundary
conditions, different geometrical shapes and asymmetrical loadings could be carried out.
Hereby, one could possibly develop more generic geometric analysis tools for predicting the
structural behaviour of shell structures.

Finally a further development of the Principal Stress Trajectory tool in order to accommo-
date a structural model with flexural reinforcement placed in accordance to the trajectories
could be an interesting addition to the tools developed in this project.

Throughout this project the parametric approach has been applied to both simple and very
complex model generations which is one of the most important aspects of the parametric
approach. The features can be applied to simple tasks as in Part 1 but also more complex
tasks as in Part 2 and 3 of the project. Both minor and major alterations of design are
applicable through the parametric approach and the interoperability of the tools simplifies
visualisations various testings in the conceptual phase of a design process. Especially the
automatisation of processes and the interoperability of software indicates that the parametric
approach could be one of most powerful tools to reducing the gap between architects and
engineers.
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